eprintid: 1870 rev_number: 8 eprint_status: archive userid: 2 dir: disk0/00/00/18/70 datestamp: 2017-02-08 07:55:56 lastmod: 2018-03-28 12:06:18 status_changed: 2017-02-08 07:55:56 type: article metadata_visibility: show creators_name: Nyffenegger, Paul creators_name: Frohlich, Cliff creators_id: creators_id: cliff@ig.utexas.edu corp_creators: Department of Geological Sciences and Institute for Geophysics University of Texas at Austin, Texas, USA corp_creators: University of Texas Institute for Geophysics, Austin, Texas, USA title: Recommendations for determining p values for aftershock sequences and catalogs subjects: MP2_2 divisions: EPOS-IP full_text_status: none abstract: Using synthetic aftershock sequences, we investigate the factors that influence the maximum likelihood estimate (MLE) of the Omori-law p value (pMLE) determined for aftershock sequences of individual earthquakes, as well as for “stacked” sequences constructed using aftershocks from two or more mainshock events. The estimated uncertainty in pMLE, called σMLE, depends explicitly on the aftershock sequence population N, the ratio of the begin and end times of the time interval of interest T/S, and on pMLE itself; this dependence on pMLE leads to over- or underestimating σMLE. Moreover, σMLE depends on the aftershock times themselves only as they affect pMLE and is unaffected by whether the sequence decay resembles the Omori decay model. Thus, we recommend that reported p values be accompanied by a goodness-of-fit test, such as the Anderson-Darling statistic Wn2, to assess how well the sequence resembles Omori's law (OL), as well as by values for N, S, and T. Stacking aftershock sequences permits the study of p values for entire catalogs as well as sequences possessing too few events to allow individual analysis. However, stacking sequences with differing begin and end times introduces artifacts into the aftershock time series that need to be avoided when determining p values. One artifact arising at small times after the mainshock mimics the effect of the c parameter in the modified Omori's law (MOL). We can avoid the artifacts by excluding time spans containing changes in the slope of the log rate of aftershock activity from the analysis. For most situations where sequences with varying p, N, and begin and end times are stacked, pMLE is approximately equal to the weighted mean of the individual sequence p values. date: 1998-10 date_type: published publication: Bulletin of the Seismological Society of America volume: 88 number: 5 publisher: Seismological Society of America pagerange: 1144-1154 issn: 0037-1106 official_url: http://www.bssaonline.org/content/88/5/1144.abstract access_IS-EPOS: limited software_references: Inter-event_Time_Distribution_Analysis owner: Publisher citation: Nyffenegger, Paul and Frohlich, Cliff (1998) Recommendations for determining p values for aftershock sequences and catalogs. Bulletin of the Seismological Society of America, 88 (5). pp. 1144-1154.