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Abstract

This paper provides a generic equation for the evaluation of the maximum regional earthquake magnitude mmax. The equation is capable of generating solutions in different forms, depending on the assumptions of the model and/or the available information about past seismicity. It includes the cases (i) when earthquake magnitudes are distributed according to the truncated frequency-magnitude Gutenberg-Richter relation, (ii) when the empirical magnitude distribution deviates moderately from the Gutenberg-Richter model, and (iii) when no specific model of the magnitude distribution is assumed. As an example of application, the techniques described are applied in the assessment of mmax for Southern California. The three estimates of mmax obtained in this work are: 8.32 ( 0.43, 8.31 ( 0.43 and 8.34 ( 0.45. Since the third procedure applied is non-parametric and does not require specification of the functional form of the magnitude distribution, its estimate of the maximum magnitude for Southern California (viz. 8.34 ( 0.45) is considered more reliable than the other two, which are based on the Gutenberg-Richter model.

1. INTRODUCTION

The purpose of this paper is to provide several techniques for the assessment of the maximum regional earthquake magnitude mmax. To avoid confusion about the terminology, it is to be agreed that mmax​, being the magnitude of the largest possible earthquake, is calculated as the upper limit of magnitude for a given region. Also, synonymous with the largest possible earthquake magnitude, is the maximum regional magnitude. 
The value of maximum magnitude so defined is the same as that used by earthquake engineers (EERI Committee, 1984). This terminology assumes a sharp cut-off magnitude at a maximum magnitude mmax, so that, by definition, no earthquakes are to be expected with magnitude exceeding mmax. Cognizance should be taken of the fact that an alternative, “soft” cut-off maximum earthquake magnitude is also in use (Kagan, 1991), but in this paper only a model having a sharp cut-off of maximum magnitude is considered. 

At present there is no generally accepted method for estimating the value of mmax. The current methods for the evaluation fall into two main categories: deterministic and probabilistic. 

The deterministic procedure most often applied is based on the empirical relationships between magnitude and various tectonic and fault parameters. There are several research efforts devoted to the investigation of such relationships. The relationships are different for different seismic areas and different types of faults (Anderson et al., 1996, and the references therein). As an alternative to the above technique, researchers often try to relate the value of mmax with the strain rate or the rate of seismic-moment release (Papastamatiou, 1980; Anderson and Luco, 1983). Another procedure for the estimation of mmax was developed by Jin and Aki (1988), where a remarkably linear relationship was established between the logarithm of coda Q0 and the largest observed magnitude for earthquakes in China. The authors postulate that if the largest earthquake magnitude observed during the last 400 years is the maximum possible magnitude mmax, the established relation will give a spatial mapping of mmax. Also, a very interesting alternative procedure (based on computer simulation of the largest earthquakes) was describes by Ward (1997).  

The value of mmax can also be estimated purely on the basis of the seismological history of the area, viz. by using seismic event catalogs and an appropriate statistical estimation procedure. The most often used probabilistic procedure for maximum regional magnitude is based on the extrapolation of the classical, log-linear, frequency-magnitude Gutenberg-Richter relation. Among earthquake engineers, the best known is the extrapolation procedure as applied recently e.g. by Frohlich, 1998, and the “probabilistic” extrapolation procedure applied by Nuttli (1981), in which the frequency-magnitude curve is truncated at the specified value of annual probability of exceedance (e.g. 0.001). Another technique falling into this category is based on formalism of the extreme values of random variables. The statistical theory of extreme values was known and well developed in the forties already, and was applied in seismology as early as 1945 (e.g. Nordquist, 1945). The appropriate statistical tools required for the estimation of the end-point of distribution functions were developed later (e.g. Robson and Whitlock, 1964; Hall, 1982) but used in estimating maximum regional magnitude from the eighties only (Dargahi-Noubary, 1983; Kijko and Sellevoll, 1989, 1992; Pisarenko et al., 1996). 

The purpose of this paper is to provide a procedure (equation) for the evaluation of mmax which has the potential to be free from subjective assumptions and which is only driven by seismic data. The equation is generic and is capable of generating solutions in different forms, depending on the assumptions about the model and/or on the information available about past seismicity. 

2. MAXIMUM REGIONAL MAGNITUDE mmax:  GENERIC EQUATION

Suppose that in the area of concern, within a specified time interval T, all n of the main earthquakes that occurred with a magnitude greater than or equal to mmin are recorded. Let us assume that the value of the magnitude mmin is known and is denoted as the threshold of completeness. We assume further that the magnitudes are independent, identically distributed, random values with cumulative distribution function (CDF), FM(m). The parameter mmax is the upper limit of the range of magnitudes and is thus termed the (unknown) maximum regional magnitude, and is to be estimated. Let us assume that all n recorded magnitudes are ordered in ascending order, i.e. m1 ( m2 ( … ( mn. We observe that mn, which is the largest observed magnitude (denoted also as 
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After integrating by parts, the expected value of Mn, E(Mn), is 
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Hence 
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This expression, after replacement of the expected value of the largest observed magnitude, E(Mn), by the largest magnitude already observed, 

, provides the equation
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in which the desired mmax appears on both sides. However, from this equation an estimated value of mmax (denoted as 
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) can easily be obtained by iteration. The first approximation of 
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can be obtained from equation (4) by replacing the unknown upper limit of integration, mmax, by the maximum observed magnitude, 
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. The next approximation is obtained by replacing the upper limit of integration by its previous solution. Some authors simply call the method the iterative method and it was found that in most cases the convergence is very fast. An extensive analysis and formal conditions of convergence of the above iterative procedure are discussed elsewhere. Cooke (1979) was probably the first to obtain the above estimator of the upper bound of a random variable. If applied to the assessment of the maximum regional magnitude, equation (4) says that the maximum regional magnitude mmax is equal to the largest magnitude already observed, 

, increased by an amount 
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. It should be noted that in his original paper Cooke (1979) suggested an equation in which the upper limit of integration is equal to 
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and not mmax. Clearly, for large n, the two equations are equivalent and provide the same solutions.
Estimator (4) is, by its nature, very general and has several interesting properties. For example, it is valid for each CDF, and does not require the fulfillment of any additional conditions. It may also be used when the exact number of earthquakes, n, is not known. In this case, the number of earthquakes, n, can be replaced by (T. Such a replacement is equivalent to the assumption that the number of earthquakes occurring in unit time conforms to a Poisson distribution with parameter (, with T the span of the seismic catalog. It is also important to note that, since the value of the integral 
[image: image11.wmf]Δ

 is never negative, equation (4) provides a value of 
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 which is never less than the largest magnitude already observed. Of course, the drawback of the formula is that it requires integration. For some of the magnitude distribution functions the analytical expression for the integral does not exist or, if it does, requires awkward calculations. This is, however, not a real hindrance, since numerical integration with today’s high-speed computer platforms is both very fast and accurate. Equation (4) will be called the generic equation for the estimation of mmax.
In the following section we will demonstrate how equation (4) can be used in the assessment of the maximum regional magnitude mmax in the different circumstances that a seismologist might face in real life. The cases considered include the following: 

(i) the earthquake magnitudes are distributed according to the doubly truncated Gutenberg-Richter relation,

(ii) the empirical magnitude distribution deviates moderately from the Gutenberg-Richter model, 

(iii) no specific model of the magnitude distribution is assumed, and only a few of the largest magnitudes are known. 

3. SOME SPECIAL CASES

3.1. CASE I: Application of the Generic Equation to the Gutenberg-Richter Magnitude Distribution. (Formula for mmax for seismologists accepting the Gutenberg-Richter frequency-magnitude distribution unconditionally) 

For the frequency-magnitude Gutenberg-Richter relation, the respective CDF of magnitudes, which are bounded from above by mmax, is (Page, 1968)
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where C is a normalizing coefficient equal to {1 – exp[-( (mmax - mmin)]}-1, ( = bln(10), and b is the b-parameter of the Gutenberg-Richter relation. Following the equation (4), the estimator of mmax requires the calculation of the integral ( =  
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 an integral which does not have a simple solution. It can be shown that an approximate, and straightforward estimator of mmax can be obtained through an application of Cramér’s approximation, which says that for large n, the value of 
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 denotes an exponential integral function. Hence, following equation (4), for the Gutenberg-Richter frequency-magnitude distribution, the estimator of mmax is obtained as a solution of the equation  
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Equation (6), which provides a value for the maximum regional magnitude 

, was introduced in Kijko and Sellevoll (1989). The value of mmax obtained from the solution of equation (6) will be termed the Kijko-Sellevoll estimator of mmax​, or, in short, K-S. The calculation of the variance of the estimated maximum magnitude, Var(
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), is the same as for Cases II and III, and is shown in Section 3.3.

3.2. CASE II:  Application of the Generic Equation to the Gutenberg-Richter Magnitude Distribution in Case of Uncertainty in the b-value. (Formula for mmax for seismologists having limited faith in the Gutenberg-Richter frequency-magnitude distribution) 

A significant shortcoming of the K-S formula for mmax estimation comes from the implicit assumptions that (i) seismic activity remains constant in time, (ii) the proper functional form of the magnitude distribution is specified, and (iii) the parameters of the assumed distribution functions are without error. As many studies of seismic activity suggest, however, the seismic process can be composed of temporal trends, cycles, short-term oscillations and pure random fluctuations. A list of some well-documented cases of temporal variation of seismic activity of areas from all over the world is given in Kijko and Graham (1998). 

When the variation of seismic activity is a random process, the Bayesian formalism, in which the model parameters are treated as random variables, provides the most efficient tool to account for the uncertainties considered above. In this section, a Bayesian-based equation for the assessment of the maximum regional magnitude will be derived in which the uncertainty of the Gutenberg-Richter parameter b is taken into account. Consideration of such a uncertainty in the b-value renders the three implicit assumptions as redundant. 

Following the assumption that the variation of the (-value in the Gutenberg-Richter-based CDF (5) may be represented by a Gamma distribution with parameters p and q, for mmin 
[image: image23.wmf]£

 m 
[image: image24.wmf]£

 mmax, the Bayesian CDF of magnitudes takes the form:
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where C is a normalizing coefficient, 
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. It should be noted that application of formula (7) requires that the standard deviation of parameter ( includes two components: aleatory and epistemic uncertainties. 

Knowledge of the Bayesian, Gutenberg-Richter distribution (7), makes it possible to construct the Bayesian version of the estimator of mmax. Following the generic equation (4), the estimation of mmax requires calculation of the integral ( equal to 
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where 
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 is the Incomplete Gamma Function. Thus, the estimator of mmax, when the uncertainty of the Gutenberg-Richter parameter b is taken into account, is calculated as a solution of equation 
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The value of mmax obtained from equation (9) will be denoted as the Kijko-Sellevoll-Bayes estimator of mmax, or, in short, K-S-B. An extensive comparison of performances of K-S and K-S-B estimators is given in Kijko and Graham (1998). 

3.3. Case III: Estimation of mmax when no Specific Model of the Magnitude Distribution is Assumed.  (Formula for mmax for seismologists who only believe in what they see) 

The procedures derived in the previous sections are parametric and are applicable when the empirical, log-frequency-magnitude graph for the seismic series exhibits apparent linearity, starting from a certain 
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value. However, many studies of seismicity show that, in some cases, (i) the empirical distributions of earthquake magnitudes are of bi- or multi-modal character, (ii) the log-frequency-magnitude relation has a strong non-linear component or (iii) the presence of "characteristic" earthquakes is evident. 

In order to use the generic equation (4) in such cases, the analytical, parametric models of the frequency-magnitude distributions should be replaced by a non-parametric counterpart. The non-parametric estimation of a probability density function (PDF) is an approach that deals with the direct summation of the kernel functions using sample data. Given the sample data mi, i = 1 ,..., n, and the kernel function K((), the kernel estimator 
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where h is a positive smoothing factor. The kernel function K(() is a PDF, symmetric about zero. The specific choice of it is not so important for the performance of the method; many unimodal distribution functions ensure similar efficiencies. In this work the Gaussian kernel function, K(x) = 1/
[image: image41.wmf]p
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exp(x2/2), was used. However, the choice of the smoothing factor h is crucial because it affects the trade-off between random and systematic errors. Several procedures exist for the estimation of the value of this parameter, none of them being distinctly better for all varieties of real data. In this work the least-squares cross-validation (Stone, 1984) was used. The details of the procedure are given by Kijko et al. (1999). Fortunately, in the application of the non-parametric estimation procedure, the integration of the CDF is not strongly affected by the accuracy of h. The tests show that the final estimates of hazard obtained when the optimal value of h is used do not differ much from those achieved in the case of a reasonable guess of h.

Following the functional form of a selected kernel K(x) and the fact that the data comes from a interval 
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where 
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 denotes the standard Gaussian cumulative distribution function. Making use of the non-parametric, Gaussian based estimation of the CDF as given by equation (11), the approximate value of the integral for ( is 
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 Therefore, the equation for mmax based on the non-parametric Gaussian estimation of PDF takes the form  
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The value of mmax obtained from equation (12) will be denoted as the non-parametric, Gaussian-based estimator or, in short, N-P-G. 

The N-P-G estimator of mmax is very useful. Its strongest point is that it does not require specification of the functional form of the magnitude distribution FM(m).  By its nature, therefore, it is capable of dealing with cases of complex empirical distributions, e.g. distributions which are in extreme violation of log-linearity, and/or are multimodal, and/or incorporate "characteristic" earthquakes. The drawback of estimator (12) is that, formally, it requires knowledge of all events with magnitude above a specified level of completeness mmin. In practice, though, this can be reduced to a knowledge of a few (say 10) of the largest events. Such a reduction is possible because the contribution of the weak events to the estimated value of mmax decreases very rapidly as magnitude decreases and for large n, the few largest observations carry most of the information about its endpoint. 

Elementary computations show (Kijko and Graham, 1998) that the approximate variance of any of the above estimators [i.e. (6), (9) and (12)] is given by 
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where 
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 denotes the standard error in the determination of the maximum observed magnitude 
[image: image50.wmf]obs

m

max

, and 
[image: image51.wmf]D

 represents respective corrections. 

4. Example of Application: mmax for Southern California

All information about the seismicity of Southern California during the last 150 years was taken from Appendix A of a paper by Field et al. (1999). In order to be consistent with the assumption of the independence of seismic events, all aftershocks were removed. This reduced catalog also has different levels of completeness for various time intervals. Application of the maximum likelihood procedure to this catalog, following procedure used by Kijko and Sellevoll, (1992), yields the values: 
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 denote the K-S estimator (6) and K-S-B estimator (9) respectively. Application of the remaining procedure to find estimates of mmax gives: 
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 denotes the non-parametric, Gaussian-based estimator (12). 

One should not be surprised that the K-S and K-S-B estimators of mmax differ from its N-P-G counterpart. Obviously, the differences follow from the fact that the empirical distribution of magnitude does not follow the standard, log-linear Gutenberg-Richter relation. The first two procedures (K-S and K-S-B) are based on the Gutenberg-Richter relation, while the N-P-G procedure is model-free and therefore is able to take characteristic earthquakes into account, which are clearly seen in the analyzed data set (Figure 1). 
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Figure 1. Observed cumulative number of earthquakes and its non-parametric fit for the data from southern California (after Field et al., 1999).

5. Remarks and Conclusions 

This paper is devoted to the problem of determining the maximum regional earthquake magnitude mmax. A generic equation for mmax evaluation was developed. The equation is very flexible and is capable of generating solutions in different forms, depending on the assumptions about the model and/or on the available information about past seismicity. Three special cases of the generic formula are discussed: 

· when earthquake magnitudes are distributed according to the truncated Gutenberg-Richter relation, 

· when the empirical magnitude distribution deviates appreciably from the Gutenberg-Richter model, 

· when no specific model of magnitude distribution is assumed. 

As an example of application of the developed formalism, the three solutions (abbreviated as K-S, K-S-B, and N-P-G) have been applied to the assessment of the maximum magnitude for Southern California. The three estimates of mmax are: 8.32 ( 0.43, 8.31 ( 0.43 and 8.34 ( 0.45. The values of 
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 obtained from the K-S and K-S-B procedure, are insignificantly lower than the value obtained from the application of the non-parametric procedure N-P-G. This difference can be attributed to the fact that the K-S and K-S-B estimators are based on the Gutenberg-Richter model of the frequency-magnitude relation, which is not necessarily correct for Southern California. Since the N-P-G procedure is non-parametric and does not require specification of the functional form of the magnitude distribution, its estimate of the maximum magnitude for Southern California (equal to 8.34 ( 0.45), may be considered more reliable than the model-based estimators K-S and K-S-B. 
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