

EARTHQUAKE DYNAMICS and the PREDICTION of STRONG GROUND MOTION

Raoul Madariaga Laboratoire de Géologie Ecole Normale Supérieure Paris

Spice training network EU

ANR cattel

Different scales in earthquake dynamics

Kinematic modeling

1. Elastic model + attenuation

- 3. Modeling program (and, of course a BIG computer)
- 4. Seismic data

Macromodels for very large earthquakes

Terashake 2.1

(Olsen, et al 2006)

San Francisco 1906

(Aagaard et al, 2006)

Modelling the classical Haskell model

Peak ground velocities for a Haskell-like model

v

У

Transverse component

Parallel component

Wave propagation around and on a fault

Parkfield 2004

Kinematic model by Liu, Custodio and Archuleta (2006)

Modeling by Finite Differences Staggered grid Thin B.C.

Full 4th order in space No damping dx=100m dt=0.01 Hz Computed up to 3 Hz

Few hours in intel linux cluster

Parkfield 2004

Data high pass filtered to 1 Hz.

Synthetics computed For the slip model of Liu et al up to 3Hz On a 100 m grid

Structure from Chen Ji 2005 A very simplified version of Liu et al (2006) model

Resolution power up to 3 Hz

After K. Sesetyan, E. Durukal, R. Madariaga and M. Erdik

Surface velocities for Parkfield model

Apparent supershear shock Due to low shear wave speeds Near surface

Kinematic model of Parkfield-like earthquake

The role of surface waves

Peak ground velocities for a Parkfield-like model

transverse component

Earthquake dynamics

Rupture process for a circular crack

The rupture process is controlled by wave propagation!

Far field radiation from circular crack

Displacement pulse

Spectrum

Iquique long. valley altiplano coast 5 0 5 Elevation (km) - 10 0 -50 Depth (km) -100 13 June 2005 M=7.8 (d)-71 -70 -69 $Mo = 5 \times 10^{20} Nm$ -150 100 300 0 200 Distance from the trench (km) 70 60 (s/m.N ⁸¹01) ⁰M C) d) P Ø From Peyrat et al, 2006 10 01 5 10 15 Time (s) 5 20

Example from Northern Chile Tarapacá earthquake

CONCLUSIONS

- Seismic data has increased dramatically in quality and number.
- Opens the way to better kinematic and dynamic models
- Earthquake Modeling has become a well developed research field
- There are a number of very fundamental problems that need careful study (geometry, slip distribution, etc)
- Main remining problem: non-linear dynamic inversion

The 2000 Western Tottori earthquake

Tottori accelerograms
have absolute time

 Hypocentre determined directly from raw records

- No surface rupture observation
- M_w 6.6~6.8
- Pure left-lateral strike slip event
- Hypocentral depth poorly constrained

Kinematic inversion of Tottori earthquake

Small slip around the hypocentre

Slip increases towards the upper northern edge of the fault

Velocity Waveforms

Good fit at nearfield stations (misfit=3.4 L²)

The main problem with dynamic inversion

5 Distance along dip (km) 5 15 \diamond 20 25 0 10 20 25 30 5 15 Distance along strike (km)

Inversion grid

Computational grid

Inversion grid has about 30 elements (degrees of freedom)

Computational grid has > 1000 elements

This method was used by Peyrat and Olsen

Inversion of a simple geometrical initial stress field and/or friction laws

An ellipse has only 7 independent Degrees of freedom

Finite difference grid is independent of inverted object

Based on an idea by Vallée et Bouchon (2003)

Dynamic modelling of Tottori

Main Results

Velocity Waveform fitting for EW component

• Velocity waveforms fit observations less well than the kinematic model.

• For each station both amplitude and arrival phases match satisfactorily

Outlook

Two approaches to study the propagation of the Tottori earthquake:

• The **non linear kinematic inversion** gives a very good wavefits controlled by a **diagonal stopping phase**.

• The dynamic rupture inversion allows to fit very well both amplitude and arrival phases. The horizontal stopping phase controls the waveforms.

• A dynamic inversion with a slip distribution controlled by 2 elliptical patches is in progress.

We relocate the hypocentre close to 14 km depth