

Evaluating Site Effects in Areas of Low Seismicity

Donat Fäh

Swiss Seismological Service ETH Zurich

Known Earthquakes with Damage

A 3D site effect in the city ?

(Oprsal and Fäh, 2006)

Damage field of the 1855 Visp earthquake Mw=6.4

ECEES 2006 Geneva

Site Visp 1855 Earthquake

(Fritsche et al., 2006))

What would happen today?

Visp

Methods to quantify site effects

- Ambient vibration H/V spectral ratios
- Ambient vibration array techniques
- Active geophysical methods
- Numerical modelling
- Records of small earthquakes

Ambient vibration H/V spectral ratios: anatomy

Ambient vibration H/V spectral ratios:

Ambient vibration H/V spectral ratios: anatomy

Identification of resonances in 2D structures using ambient vibration recordings

Reference-station-method using ambient vibration signals Alpine valleys: the Valais case

H/V spectral ratios as a function of the azimuth Alpine valleys: the Valais case

Map of the fundamental frequencies of resonance of the sediments

Amplitude of H/V spectral ratios: Qualitative map of the S-wave velocity contrast between sediments and bedrock

Ambient vibration array techniques and active techniques: (FK, HRBF, SPAC, SASW, SEISMICS,.....)

A complex case!

Ambient vibration array techniques : Dispersion curves from the vertical components & ellipticity

Best comparison of models: Difference in the site response

SH-wave, vertical incidence: Mean for 512 synthetics (point sources, scaled to Mw 6)

Modelling needs some approximations: the choices are important

The modelling techniques we can apply :

- ≻ 1D (SH, P-SV), 2D (SH, P-SV), 3D
- elastic, visco-elastic, non-linear material behaviour
- > plane waves vertical or obligue incidence, realistic sources (point, extended)

Ambient vibration array techniques : Adding the Love wave information

Ambient vibration array techniques : Dispersion curves and mode jumping

Ambient vibration array techniques and non-invasive active techniques: Comparison for a complex case

SASW (active): Depth resolution limited to 20-30m Limited to 1D structures (smooth models) Problems with urban noise

S-wave seismic (active): Frequency range outside the range 0.5-10Hz Problems with urban noise

Ambient vibration array technique (passive): Limited to 1D structures (Smooth models) Possible ,,mode jumping"

Ambient vibration array techniques and non-invasive active techniques: Comparison for a complex case

Ambient vibration array techniques and active techniques: From single measurements to soil characterization

Ambient vibration array techniques and active techniques: From a single measurements to soil characterization

Havenith et al., 2006

Numerical modelling (3D)

Oprsal et al., 2005

Testing numerical models with observations: The problem of the reference site conditions: What is ,,bedrock"?

Testing numerical models with observations: The problem of the reference site conditions: What is "bedrock"?

Amplification in SA (5% damping)

Reference Bedrock

The 2 reference bedrock structures for the modelling have both a vs30 of about 1500 m/s!
➤ The waves see the structure related to the wavelength and not only the upper 30m.
➤ Rock sites also have a site effect.

Reference Bedrock?

Estimated PGA, So Rock foreland. Reta

> The reference structure for hazard maps, attenuation models and microzonations are generally very uncertain!

This can be improved by characterizing the sites of the seismological stations (vs, vp profiles)!

(Geological) Site classification in building codes:

Summary:

- Some more work is needed to make our field techniques more robust.
- \succ The choices in the numerical modelling strongly affect the results.
- Observations (strong & weak motion) are necessary to confirm the modelling. There is a need for dense accelerometric networks.
- > Site characterization of the seismic stations is required to reduce uncertainties.
- Building codes: site classification schemes can be improved (microzonation, use of f₀, quarter-wavelength velocity...)

Topics that I have not addressed:

- \succ How to go from weak motion to strong motion estimates
- ➢ non-linear behaviour, liquefaction and other secondary phenomena

Thank you for your attention!

Acknowledgments: S.Fritsche, D.Roten, G.Stamm, P.Kästli, M.Gisler, G.Schwarz, H.Havenith, C.Cornou, I.Oprsal, D. Giardini, S.Steimen, F.Kind, B.Steiner, F.Matter, P.Suhadolc, G.Panza, W.Brüstle, U. Polom, A.Roulle, P.Huggenberger, E.Fäh M.Mueller, R.Meier and many others

