Monitoring performance for hydraulic fracturing using synthetic microseismic catalogue at the Wysin site (Poland)

José Ángel López Comino ${ }^{1, *}$

Simone Cesca ${ }^{1}$

Marius Kriegerowski ${ }^{\mathbf{1 , 2}}$
Sebastian Heimann ${ }^{1}$
Torsten Dahm ${ }^{1}$
Janusz Mirek ${ }^{3}$
Stanislaw Lasocki ${ }^{3}$

* jalopez@gfz-potsdam.de
${ }^{1}$ GFZ German Research Centre for Geosciences, Potsdam (Germany)
${ }^{2}$ University of Potsdam, Institute of Earth and Environmental Sciences, Potsdam-Golm (Germany)
${ }^{3}$ Institute of Geophysics, Polish Academy of Sciences, Warsaw (Poland)
European Geosciences Union General Assembly Vienna - April 23-28, 2017

SHale gas Exploration and Exploitation induced Risks

1. Monitoring network

2. Methodology

Assessing the monitoring performance before the target hydraulic fracturing using a synthetic dataset

Synthetic microseismic catalogue

1. Background seismicity (tectonic stress)
2. Induced seismicity (fluid injection)

1D local crustal model

Noise analysis

An amplitude threshold approach

Realistic synthetic waveform dataset (Magnitude of Completeness, M_{c})

Stacking and
Coherence analysis

3. Synthetic microseismic catalogue

 Random full мт OOOOOODO900000000600000

Hudson plot (Gaussian Kernel density)

3. Synthetic microseismic catalogue

Distribution of hypocenters and magnitudes in the fracturing area

> Frequency-magnitude distribution ($\mathbf{- 1}<\mathbf{M w}<\mathbf{3}$) follows a Gutenberg-Richter law with $\mathbf{b}=$ $\mathbf{1}$ and $\mathbf{a}=1.84$ according 1000 events for each family
> Maximum rupture length $=\mathbf{3 5 0} \mathbf{~ m}$ (considering a circular fault model of Madariaga, 1976 and stress drop average = 2.7 Mpa, Kwiatek et al., 2011). Reasonable value according other experiences (Davies et al., 2012; Fisher and Warpinski 2012)

A priori, we do not dispose of such information and relied on previous studies on the broader region of interest.

Extract a P-wave velocity profile for the fracking area according:

High-resolution 3D seismic model of the crustal and uppermost mantle structure in Poland (Grad et al, 2015)

P-wave velocity
Grad et al., 2015
S-wave velocity

$$
v_{p}=1.73 v_{s}
$$

Density (Mg /m3)

Grabowska et al., 1998

Król et al, 2013
Attenuation

$$
\begin{aligned}
\mathrm{Q}_{\mathrm{p}} & =120 \\
\mathrm{Q}_{\mathrm{s}} & =60
\end{aligned}
$$

5. Synthetic waveforms

Pyrocko package (http://emolch.github.io/pyrocko/)

Raw synthetic waveforms
(displacement)

An amplitude threshold approach

Real noise contaminated continuous seismograms (velocity)

Stacking and Coherence analysis

6. An amplitude threshold approach

Maximum amplitudes according to the M_{W} and the hypocentral distance for each station

6. An amplitude threshold approach

Noise analysis

> Band pass filtered $2-80 \mathrm{~Hz}$ and a notch filter at 50 Hz .
> Mean and standard deviation values in displacement are obtained from the random noise sampling (one-month data) taking into account the different hours of the day.
$>$ Larger noise levels during day hours (6.00-18:00 hours) are found as a general pattern.

6. An amplitude threshold approach

The magnitude of completeness ($\boldsymbol{M}_{\boldsymbol{c}}$) can be calculated straight by the lowest magnitude above which all synthetic events are detected by at least 4 stations.

Imposing different signal-to-noise ratio (SNR) requirements, we can estimate detected and undetected events at each station.

A potential empirical law can adjust this relation with fit parameters d_{1} and d_{2} :

$$
M_{c}=d_{1} S N R^{d_{2}}-d_{0}
$$

> Array consideration:

We can add fictitious stations located in the centre of each array.

In general, SNR improves with the square root of the number of stations belonging to an array.
$\mathbf{M}_{\mathbf{c}}$ differs for different source processes
Tensile-cracks are more difficult to detect than double couple sources with the same magnitude.

6. An amplitude threshold approach

> Extending spatially the previous values of M_{c} around the fracking area for a realistic case of SNR = 2 .

Array

M_{c} versus r

$$
M_{c}(r)=C_{1} r^{C_{2}}+C_{3}
$$

fit parameters C_{1}, C_{2}, C_{3}
Mignan et al., 2011

$\boldsymbol{M}_{\boldsymbol{c}}$ versus \boldsymbol{r}
$M_{c}(r)=C_{1} r^{C_{2}}+C_{3}$

6. An amplitude threshold approach

7. Stacking and Coherence analysis

Lassie

> Automatic detector based on the stacking of characteristic functions of P - and S -waves according to the energy variations calculated from the square amplitudes of each trace.

7. Stacking and Coherence analysis

Lassie

> We need to define an optimal detector level, able to detect weak events while not increasing excessively the number of false detections.
> Reasonable threshold (e.g. 950) where only 1% of false detections are accepted.

Poster session, EGU2017-1875. Full waveform approach for the automatic detection and location of acoustic emissions from hydraulic fracturing at Äspö (Sweden)

Realistic synthetic datasets before hydraulic fracturing to assess the monitoring performance (detection, location and moment tensor)

Mapping the magnitude of completeness using synthetic seismograms and realistic noise
M_{c} experiences significant changes during day hours, reaching values of $M_{c} \sim 0.1$ for the most favourable case.

Background (DC) earthquakes more detectable than induced (tensile crack) earthquakes

These results have been recently published: López-Comino et al., 2017, GJI
López-Comino, J. A., S. Cesca, M. Kriegerowski, S. Heimann, T. Dahm, J. Mirek and S. Lasocki (2017). Monitoring performance using synthetic data for induced microseismicity by hydrofracking at the Wysin site (Poland), Geophys. J. Int., in press.

Monitoring performance for hydraulic fracturing using synthetic microseismic catalogue at the Wysin site (Poland)

