Static stress drop of induced earthquakes in seismic hazard assessment: Preliminary results from The Geysers geothermal site

Monika Staszek¹, Beata Orlecka-Sikora¹, Stanisław Lasocki¹, Grzegorz Kwiatek²

mstaszek@igf.edu.pl, orlecka@igf.edu.pl, lasocki@igf.edu.pl, kwiatek@gfz-potsdam.ge

¹Institute of Geophysics, Polish Academy of Sciences, Krakow, Poland

² Section 3.2: Geomechanics and Rheology, GFZ Potsdam German Research Centre of Geosciences, Potsdam, Germany

4-10 September Trieste

SHale gas Exploration and Exploitation induced Risks

Probabilistic Seismic Hazard Assessment

Probabilistic Seismic Hazard Assessment is calculated on the basis of probabilistic characteristics of past and present seismic zones.

- Distribution of events magnitudes → calculated from Gutenberg-Richter relation / kernel density estimation
- Distribution of events occurrence frequency → calculated on the basis of complete seismic catalogue under assumption that seismicity is a stationary Poisson process
- Spatial distribution of events \rightarrow uniform distribution of event occurrence probability over entire area

Data: The Geysers Prati-9 and Prati-29 region

7.8

7.6

7.4

6

354 events \rightarrow static stress drop calculated with spectral ratio method

	354 events
M _w	1.03 – 3.37
Δσ	0.77 – 71.50 MPa
mean(Δσ)	7.17 MPa
R	9.46 – 200.60 m
Z	1.499 – 2.872 km
Time	31/12/2008 - 07/08/2014

Static stress drop of induced events

Static stress drop changes in time

Statistical tests revealed that the differences between mean values in event windows can be statistically significant, e.g. p = 0.0364.

Differences in static stress drop are not a result of estimation error

However, if we consider windows, which are close to each other the differences between mean values are not statistically significant.

Static stress drop changes in space

• Different state of stress (e.g. Goertz-Allmann et al., 2011)

• Spatial distribution of geomechanical properties (e.g. Hardebeck & Hauksson, 1997, Solvay Mine in France)

(3) $\Delta \sigma$ reveals spatial pattern which changes in time

Is it possible to utilize static stress drop distribution to the assessment of spatial distribution of future events?

Thesis: Distribution of seismic events depends on the distribution of $\Delta \sigma$ of preceding events.

Method of probability estimation on the basis of $\Delta\sigma$ distribution

Results (window = 40 events)

4299

4298.8

4298.6

30-Nov-2010 05:51:45 17-Feb-2011 05:16:26

514.6514.8 515515.2

18-Nov-2010 22:01:32 10-Feb-2011 02:02:31

x 10⁻⁵

5

4.5

4

3.5

3

2.5

2

1.5

1

0.5

02-Dec-2010 10:59:39 20-Feb-2011 21:35:52

Future work

- Thesis verification (comparison of PDF of $\Delta \sigma_{ratio}$ in window B with PDF of $\Delta \sigma_{int}$ in window B)
- Consideration of static stress drop and localization uncertainties in proposed methodology
- Consideration of events depth in proposed methodology
- Determination of boundary conditions of proposed methodology
- Testing the influence of catalogue incompleteness on the results

References

Allmann B., Shearer P. (2009), Global variations of stress drop for moderate to large earthquakes. Journal of Geophysical Research, 114, B01310, doi:10.1029/2008JB005821.

Baltay A., Ide S., Prieto G., Beroza G. (2011), Variability in earthquake stress drop and apparent stress. Geophysical Research Letters, 38, L06303, doi:10.1029/2011GL046698.

Causse M., Song S. G. (2015), Are stress drop and rupture velocity of earthquakes independent? Insight from observed ground motion variability. Geophysical Research Letters, 42.

Goertz-Allmann B., Goertz A., Wiemer S. (2011), Stress drop variations of induced earthquakes at the Basel geothermal site. Geophysical Research Letters, 38, L09308, doi:10.1029/2011GL047498.

Goertz-Allman B., Wiemer S. (2013), Geomechanical modeling of induced seismicity source parameters and implications for seismic hazard assessment. Geophysics, 78, 25-39.

Hardebeck J. L. and Hauksson E. (1997), Static Stress Drop in the 1994 Northridge, California, Aftershock Sequence. BSSA, 87, 6.

Kwiatek G., Martínez-Garzón P., Dresen G., Bohnhoff M., Sone H., and Hartline C. (2015), Effects of long-term fluid injection on induced seismicity parameters and maximum magnitude in northwestern part of The Geysers geothermal field. J. Geophys. Res. Solid Earth, 120, doi:10.1002/2015JB012362.

Kwiatek G., Plenkers K., Dresen G., and JAGUARS Research Group (2011). Source Parameters of Picoseismicity Recorded at Mponeng Deep Gold Mine, South Africa: Implications for Scaling Relations. Bulletin of the Seismological Society of America, 101, 6.

Martínez-Garzón P., Kwiatek G., Sone H., Bohnhoff M., Dresen G., and Hartline C. (2014), Spatiotemporal changes, faulting regimes, and source parameters of induced seismicity: A case study from The Geysers geothermal field. J. Geophys. Res. Solid Earth, 119, 8378 – 8396, doi:10.1002/2014JB011385.

Udias A., Madariaga R., Buforn E. (2014). Source Mechanisms of Earthquakes: Theory and Practice. Cambridge University Press.

Thank you for your attention!

