Coal-mining induced events in the Ruhr area, Germany

M. Bischoff, T. Meier, R. Fritschen

Ruhr-University Bochum
Collaborative Research Centre 526 „Rheology of the earth"

Distribution of seismicity

(Leydecker,2004)

Seismological Observatory

Ruhr-University Bochum:

- continuously monitored since 1983
- 14000 induced events, $M_{L} \leq 3.3$
- completeness of catalogue: whole catalogue: $\mathrm{M}_{\mathrm{L}} \geq 1.5$ since 2005: $\mathrm{M}_{\mathrm{L}} \geq 0.7$

Distribution of seismicity

2006

- 2006: ~ 1300 induced events
$-\mathrm{M}_{\max }=2.4$
- ~20-40 events per month noticed by people $\left(\mathrm{M}_{\mathrm{L}} \geq 1.2\right)$

Magnitude-frequency distribution

Ruhr area 1983-2006

Magnitude-frequency distribution

Energy release

Energy release

Bergkamen

Herringen

HAMNET - a local seismological network

- 15 stations (GFZ Potsdam):

■ 9 Mark L-4C-3D (1Hz)
■ 5 Güralp CMG (60s)
1 Trillium 40 (40 s)

- Earth Data PR6-24 (GFZ) Digitizer, PC, local hard disc
- 6 subsurface stations (DMT):
- $51-84 \mathrm{~m}$ above seam
- $26-90 \mathrm{~m}$ below seam
- locations: private houses \rightarrow garages, basements
- panel length: $\sim 870 \mathrm{~m}$ depth: $1060-1100 \mathrm{~m}$ time period: 08/2006-04/2007

Localizations August - November 2006

Number of events:

- 3437 Events
$\rightarrow \sim 860$ Events/ Month
- 2170 events localized (63\%)

Selection criteria:

- at least 9 P-onsets
- rms $\leq 7 \mathrm{~ms}$

Localization accuracy:

- +/- 30m

Localizations August - November 2006

Localizations August - November 2006

Localizations August - November 2006

Fault plane solutions

(Fritschen, pers. comm.)

Types of events: (upper hemisphere)

- normal fault events parallel to longwall face
- normal fault events related to tectonic faults
- thrust fault events

Conclusions

- Mining induced events can be assigned to specific longwall panels.
- High b-value of about 2 is observed for the whole Ruhr area and is interpreted as average for different longwalls. For a specific longwall characteristic magnitudes were found.
- With the local network localizations relative to the face advance and hypocentral depths are determined.
- Most events are down to 50 m below and up to 100 m above the longwall...
-... and between 60 m behind and 60 m ahead of the longwall face.
- Locations and source mechanisms hint at different causes: existing tectonic faults, new fault planes parallel to the longwall face, normal and thrust faulting events

Thank you!

Ruhr-University Bochum
 Collaborative Research Centre 526 „Rheology of the earth"

Mining geometry

Longwall mining:

- length: ~ 1 km width: ~ 300 m
- caving:
excavations are not refilled
- face advance: $100 \mathrm{~m} /$ month $=>\sim 8-12$ month
- depth down to 1500 m

29.12.2006,

12:28:15.6 (UT),

10 HM11

12 HM13

Increase and decay of seismicity

Energy release

Ground motion - Hamm

Near-field effects

Near-field effects

$$
\begin{aligned}
\mathbf{u}(\mathbf{x}, \mathbf{t})= & \frac{1}{4 \pi \rho} \mathbf{A}^{N} \frac{1}{r^{4}} \int_{\frac{r}{\alpha}}^{\frac{r}{\beta}} \tau M_{0}(t-\tau) d \tau \\
& +\frac{1}{4 \pi \alpha^{2}} \mathbf{A}^{I P} \frac{1}{r^{2}} M_{0}\left(t-\frac{r}{\alpha}\right)+\frac{1}{4 \pi \beta^{2}} \mathbf{A}^{I S} \frac{1}{r^{2}} M_{0}\left(t-\frac{r}{\beta}\right) \\
& +\frac{1}{4 \pi \alpha^{3}} \mathbf{A}^{F P} \frac{1}{r} \dot{M}_{0}\left(t-\frac{r}{\alpha}\right)+\frac{1}{4 \pi \beta^{3}} \mathbf{A}^{F S} \frac{1}{r} \dot{M}_{0}\left(t-\frac{r}{\beta}\right)
\end{aligned}
$$

(Aki \& Richards, 1980)

Radial component

Total displacement

Near-field

Far-field

Localization

Determination of depths with subsurface stations

- Travel time difference is in the order of sampling rate
- Maximum amplitude of horizontal ground velocity
- First onset earlier at UT1L: $\Delta \mathrm{t}=2.4 \mathrm{~ms}$

29.12.2006, 12:28:15.6 (UT), $\mathrm{M}_{\mathrm{L}}=1.7$

Subsurface Stations

29.12.2006,

12:28:15.6 (UT)

Fault plane solution

