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Preface

The spatial location of sources of seismic waves is one of the first tasks when transient waves

from natural (uncontrolled) sources are analyzed in many branches of physics, including seis-

mology, oceanology, to name a few. Source activity and its spatial variability in time, the geom-

etry of recording network, the complexity and heterogeneity of wave velocity distribution are all

factors influencing the performance of location algorithms and accuracy of the achieved results.

While estimating of the earthquake foci location is relatively simple a quantitative estimation

of the location accuracy is really a challenging task even if the probabilistic inverse method is

used because it requires knowledge of statistics of observational, modelling, and a priori un-

certainties. Unfortunatelly, this is usually not a case. In such a situation additional assumptions

are necessary which additionally complicate the analysis of linversion uncertainties. It is thus

of a greate importance to have a reliable and efficient software tools which could allowed an

advanced error analysis possible. In this reference manual we describe such a software, called

TRMLOC which fulfiels above requirements with respect to local sesimicity like , for example,

in mines.

The TRMLOC location software (W.Debski and P.Klejment, 2015) performs efficiently the

inversion of seismic (acoustic) first arrival time onsets for hypocenter location using the prob-

abilistic inverse theory approach. It provides the maximum likelihood hypocenter location,

enables other hypocenter location estimators to be calculated, and, what is most important, it

allows an advanced analysis of location (inversion) uncertainties. This advanced performance

is possible due to used numerical algorithm implemented in TRMLOC.

This reference provides the most comprehensive description of the TRMLOC software in-

cluding algorithm description and technical description needed for using the software. Cor-

respondingly, the manual consists of two parts. In the first part the basic concepts and nu-

merical algorithms implemented in TRMLOCare described. The second part is a technical

reference manual where all details concerning required parameters, data, file formats, etc. are

described. For examples of using TRMLOC readers are refered to research papers (W.Debski

and P.Klejment, 2015; Debski, 2015). Especially the former one demonstrates how TRMLOC

can be used for the advanced error analysis of location tasks.
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Chapter 1

Introduction - location algorithms

Let us assume that to locate a given source, the arrival times t
obs
i i = 1 · · ·Ns are read from

waveforms recorded by Ns sensors (geophones, seismometers, piezoceramic transducers, etc.).

Let tthi (m) denote the theoretically predicted arrival time of waves originating at the point m

and recorded by ith sensor where the location parameters m = (~r, to) include three spatial

coordinates (~r = (x, y, z)) and the origin time of the event to so

t
th
i (m) = to +∆i(~r) (1.1)

where ∆i(~r) is the propagation time from the source to a given sensor.

Finding the hypocenter location can now be formulated as the optimization task (Aki and

Richards, 1985): searching for the model mml which minimizes the differences between ob-

served (tobsi ) and predicted (tthi (m) travel times. The solution can be obtained by means of any

convenient numerical optimization algorithm.

To complete the location task, an error analysis should be performed in order to evaluate the

reliability of the solution. The most popular approach to this task is based on the linearizion

of the optimized function S(m) around the solution m
ml and calculation of the covariance

matrix (Gibowicz and Kijko, 1994). However, this simple method is often not reliable. It fails if

observational and/or modeling errors have nontrivial statistics, the recording network geometry

is complicated or the velocity model has a complex structure (Lomax, 2005; Lomax et al., 2009;

Rudzinski and Debski, 2012).

Another, probabilistic approach to the source location task relies on assigning to each model

m (point in space and time) the a posteriori probability of m being the true source location

(Debski, 2010; Lomax et al., 2000, 2009). The advantage of this approach is the possibility

of full and exhaustive error and resolution analysis (Debski, 2010). In the simplest case, the

a posteriori probability density σ(m) assigned to model m reads (Mosegaard and Tarantola,

2002; Debski, 2010)

σ(m) =
1

Z
f(m)L(m) (1.2)

where Z is the normalization factor called evidence, f(m) is the probability density function

11



12 CHAPTER 1. INTRODUCTION - LOCATION ALGORITHMS

describing the a priori estimation of the source location. The second term, traditionally called

the likelihood function is defined as follow

L(m) = exp (−S(m)) . (1.3)

where

S(m) = ||tthi (m)− t
obs
i || (1.4)

is the so-called misfit function and || · || is a norm in the data space The choice of a given

norm (l1, l2, Cauchy, etc.) reflects our expectations about errors statistics, existence of outliers,

systematic bias, etc (Debski, 2010).

Various numerical estimators, like the maximum likelihood model (mml) which maximizes

σ(m), the average model (mavr), the covariance matrix, etc. can easily be calculated from

σ(m). The technique is very general but it requires exhaustive sampling of the model space to

determine the characteristics of σ(m). Consequently, the approach is computationally demand-

ing even if the very efficient Markov Chain Monte Carlo sampling technique (Gilks et al., 1995;

Lomax et al., 2009; Debski, 2010) is used.

The new possibilities of the full probabilistic seismic data inversion for hypocenter coordi-

nates opening when the time reversal mirroring technique is employed. This technique carefully

analyzed in laboratory experiments (see, e.g., Fink, 1997; Ulrich et al., 2008), by numerical

simulations (see, e.g., Kremers et al., 2011; Steiner and Saenger, 2012; Scalerandi et al., 2009),

and theoretical investigations (see, e.g., Tromp et al., 2005; Ulrich et al., 2009; Masson et al.,

2014) has already found out application in seismic prospecting (see, e.g., Witten and Artman,

2011; Gajewski and Tessmer, 2010) and location of seismic tremors (see, e.g., Larmat et al.,

2008; Artman et al., 2010; O‘Brien et al., 2011). Combaining this technique with a modern

eikonal solver has lead us to the proposition of the new TRMLOC location algorithm which

enables very fast Bayesian inversion of travel time onset data for hypocenter location.



Chapter 2

Probabilistic Inverse Technique

2.1 Introduction

The hypocenter location inverse problems can be stated as a parameter estimation problem:

having a given set of data (for example, a set of arrival times) and knowing how to model the

seismic wave propagation times for given velocity model, what are the values of hypocener

coordinates? The question “what are the values” should be understood not only in terms of

obtaining the numerical values but also as the task of estimating the uncertainties of obtained

results. The last, error analysis issue, is usually quite nontrivial because of three sources of

uncertainties, namely the finite quality of measurements, an approximate, imprecise forward

modelling, and vague, often difficult to quantify a priori expectations. An additional complica-

tion arrises due to the nonlinearity of the forward modeling.

To solve such inverse problem three different classes of numerical algorithms are commonly

used (Menke, 1989; Tarantola, 1987; Parker, 1994). They are listed in Table 2.1.

Table 2.1: Comparison of three methods of solving inverse problems.

Method Advantages Limitations

Algebraic (LSQR) - Simplicity - Only linear problems

m
ml = (GT

G+ γI)−1
G

T · tobs - Very fast - Lack of robustness

Optimization - Simplicity - No error estimation

‖G(m)− t
obs‖ = min - Fully nonlinear

Probabilistic - Fully nonlinear - More complex theory

p(m) = pA(m)L(m, tobs) - Full error handling - Efficient sampler needed

In the TRMLOC algorithm we use only the probabilistic (hitorically called also Bayessian)

approach. The basic principles of the method are following (Tarantola, 2005; Debski, 2010)

The probabilistic inverse theory can be regarded as a set of mathematical rules which ex-

tend classical experimental data analysis (Brandt, 1999) to the case where estimated parameters

13



14 CHAPTER 2. PROBABILISTIC INVERSE TECHNIQUE

cannot be measured directly. It uses the statistical approach to quantify various types of uncer-

tainties which appear when solving inverse problems. As a consequence of the unified treatment

of all uncertainties, the probabilistic inverse theory provides an answer to the problem in hand

logically expressed in a statistical way by means of the so-called a posteriori probability distri-

bution It can be vougly interpreted as the statistics of inversion errors..

The probabilistic inverse theory is built around the notion of pieces of information which

can be understood according to common sense as any information we have in hand when solv-

ing inverse problems. The solution of an inverse problem is regarded as a kind of extraction and

joining of available information – an inference process. This process is quantified by means of

the mathematical theory of probability (Debski, 2010). It should be kept in mind, though, that

statistical methods used by the probabilistic inverse theory are only very convenient mathemat-

ical tools for reformulation of the inverse problem in a general way. They do not actually solve

any inverse task but only provide a framework for it.

Actually, the most important operational difference between the probabilistic approach and

the classical ones consists in the different form of the solutions. While the algebraic and opti-

mization techniques provide a single, in a sense optimum estimation of the sought parameters,

the probabilistic solution is a probability distribution over the model space which quantifies the

“chance” that a given model is the true one. Thus, the probabilistic inverse theory reformulate

the inverse problem from the optimization task - searching for the “best fitting” model to the

problem of inspecting the a posteriori probability density.

The most comprehensive solution of inverse problems within the probabilistic approach

relies thus on sampling of the a posteriori pdf. In most practical cases this can be done only by

means of stochastic, Monte Carlo (MC) methods due to the large number of parameters (Robert

and Casella, 1999; Fishman, 1996; Curtis and Lomax, 2001; Debski, 2004).

2.2 Building a posteriori probability density

It has been shown by (Tarantola and Vallete, 1982; Tarantola, 2005; Debski, 2010) that a pos-

teriori probability density function p(m) is the product of the distribution f(m) describing a

priori information by the likelihood function L(m) which measures to what extent theoretical

predictions fit the observed data:

p(m) = const.f(m)L(m) (2.1)

where the constant represents a normalization of the probability density and the likelihood func-

tion L(m) reads (see, e.g. Tarantola, 2005; Duijndam, 1988; Jackson and Matsu’ura, 1985)

L(m) = exp
{

−‖tobs − t
th(m)‖

}

. (2.2)

The symbol ‖ · ‖ stands for a norm which is employed to measure the “distance” between

observed t and predicted t
th data. In the present studies the l1 - norms with constant weightings

(error variance) were assumed for which, for example
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‖tobs − t
th(m)‖ =

∣

∣t
obs − t

th(m)
∣

∣

σd

=
∑

i

∣

∣tobsi − tthi (m)
∣

∣

σd

(2.3)

Knowledge of the p(m) distribution allows not only to find the most likelihood model mml

for which p(mml) = max (the equivalent of the optimization or algebraic solution) but also

other characteristics like, for example, the average model and the a posteriori variance which

provides a convenient measure of imaging accuracy. These two basic characteristics of the a

posteriori distribution p(m) are indeed very important.

More than just a technical problem emerges at this point, namely how to inspect the a

posteriori distribution to extract the required information. The problem arises because in most

practical cases p(m) is a complicated, multi-parameter function. The most elementary approach

relies on the calculation of the point estimators, among which the most useful are the lowest

order central moments (Jeffreys, 1983):

1. the average model

m
avr =

∫

M

m p(m)dm, (2.4)

2. the covariance matrix

Cpij =

∫

M

(mi −m
avr
i )(mj −m

avr
j ) p(m)dm. (2.5)

The importance of the average model mavr comes from the fact that it provides not only

information on the best fitting model but also includes information about other plausible models

from the neighborhood of the “best” model mml. If sub-optimum models defined as those for

which p(m) ≈ p(mml) are similar to m
ml, then m

avr ∼ m
ml. Thus, a simple comparison

of mavr and m
ml provides a qualitative evaluation of the reliability of the inversion procedure:

the more m
avr differs from m

ml, the more complex and non-bell-shaped is the form of the

a posteriori pdf. It immediately implies that in such a case more care must be taken when

interpreting the inversion results, especially inversion uncertainties. In such situations, using

the confidence levels instead of the covariance matrix is highly recommended (Jeffreys, 1983).

The diagonal elements of the a posteriori covariance matrix Cp are convenient estimators of

the inversion uncertainties for each component of m while the non-diagonal elements measure

the degree of correlation between pairs of parameters (Menke, 1989; Jeffreys, 1983). In fact,

Cp given by Eq. 2.5 is a generalization of the least-squares covariance matrix to the case of

an arbitrary statistics p(m) including possibly nonlinear forward problems. As in the case

of the average solution m
avr, the posterior covariance matrix is meaningful only if the p(m)

distribution is unimodal. In cases of multi-modality, existence of non-resolved directions in

the model space or other “pathologies”, a more exhaustive error analysis is necessary by a

full inspection of the a posteriori distribution (Tarantola, 2005; Wiejacz and Debski, 2001;

Rudzinski and Debski, 2011).
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Two additional point estimators, namely the average model mavr and the covariance matrix

Cp, provide significantly more information than the classical mml solution but their evaluation

requires full knowledge of p(m) in order to calculate the appropriate integrals. The calculations

are trivial only in the case when p(m) is a Gaussian distribution (this requires a linear forward

problem: G(m) = Gm and the Gaussian form of f(m)). In such a case m
avr = m

ml is given

by the classical least squares formula (see,e.g. Menke, 1989; Parker, 1994) and the covariance

a posteriori matrix is given by Eq. 2.5. In any other case we need an efficient method of

calculating the multi-dimensional integrals appearing in Eqs. 2.4, 2.5. At this point the Monte

Carlo sampling technique proves to be very useful.

If a more comprehensive description of p(m) is required, the marginal pdf’s should be

calculated because the a posteriori marginal distributions give a deeper insight into the form of

p(m) than the discussed point estimators. Their inspection is extremely important for the correct

interpretation of the tomographic results. The one-dimensional (1D) marginal a posteriori pdf

distribution is defined by integrating out all but one parameter from p(m)

σi(mi) =

∫

p(m)
∏

j 6=i

dmj . (2.6)

Multi-dimensional marginals are defined in a similar way. It is important to realize that marginal

pdf distributions contain exactly the same information on thought parameters as p(m) except for

the correlation with other parameters (Jeffreys, 1983; Rudzinski and Debski, 2011). However,

inspections of the full a posteriori pdf p(m) and marginal pdf σi(mi) are not equivalent (Debski,

2010). To see the difference, let us consider two maximum likelihood solutions derived from the

p(m) and σi(mi) a posteriori distributions. In the first case, when seeking the m
ml model we

consider the set of Nm parameters which simultaneously maximizes p(m). In the second case

we solve the 1D optimization problem seeking the optimum value of only one parameter, no

matter what the values of the other components of m are. In other words, in the former case we

obtain information about all the parameters simultaneously while the inspection of the marginal

distributions provides information only about selected parameters, ignoring any relations with

the remaining ones.

In the most frequently encountered situations, point estimators calculated from the marginal

distributions and from p(m) differ slightly (Wiejacz and Debski, 2001). A difference signif-

icantly larger than the corresponding elements of the a posteriori covariance matrix indicates

a very strong correlation among parameters which, besides the case of intrinsically correlated

parameters, may indicate that some parameters or their combinations are not resolved by the

data.

Inspection of marginal pdf’s is always recommended to verify if p(m) is a multi-modal

distribution or not. This is especially important if m
avr is used as the numerical estimator.

Moreover, the inspection of the marginal pdf provides conclusive verification of whether esti-

mating the inversion errors by a posteriori covariance is justified or not.

Before moving on to a description of the Monte Carlo technique used in the context of the

Bayesian inversion, let us make two general comments on the use of the Bayesian inversion
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technique. The first one is the question why we should use this approach in the context of

tomographic imaging. The answer is that the method allows us to estimate the reliability of

the obtained solution. The point is that solving tomography problems we face various types

of uncertainties (Tarantola, 2005). Besides observational uncertainties (accuracy of travel time

estimation) we are dealing with theoretical errors (for example following the high frequency

ray approximation) and numerical calculations which are also a source of additional errors (for

example by using an approximate method of ray tracing). All these uncertainties contribute in

a very complicated way to the final a posteriori imaging errors and only the Bayesian (proba-

bilistic) method can treat them consistently.

The second comment concerns a popular use of the Bayesian inversion technique. Very

often, instead of sampling of the a posteriori pdf only the global maximum of the p(m) is sought

(e.g. Debski and Young, 2002) and claimed to be the solution of the Bayesian inversion. This

procedure is obviously correct, but it reduces the full Bayesian inversion to the optimization

method, disregarding the potential ability of the Bayesian method to deal with error analysis.

A similar situation occurs when the a posteriori pdf is a Gaussian distribution due to a specific

assumption about the a priori pdf and the form of the likelihood function (linear or linearized

forward problem and Gaussian error statistics). In such a case, the a posteriori pdf p(m) is fully

described by two parameters, namely the likelihood model mml and the covariance matrix Cp

equivalent to the algebraic solution (Menke, 1989; Tarantola, 1987; Parker, 1994). Solving the

inverse problem is then often understood as finding their numerical values, which is obviously

correct but is more of an algebraic method than a general Bayesian technique.
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Chapter 3

Time Reversal Mirroring

The wave equation (Aki and Richards, 1985) describing propagation of seismic waves exhibits

among others two very important features. First of all, being second order partial differential

equation with only add derivatives of time the equation is invariant under time reversal. Thus, if

only boundary conditions does not depend on time the solution for forward and back propagat-

ing in time waves are identical. Secondly, the equation exhibits the spatial reciprocity invariance

which means that wave propagation between two arbitrary points is invariant with respect to ex-

change the source and receiver points: the waves from source located at point A and recorded

at point B are the same as waves recorded at point A if the same source is put at point B.

Combining both above properties of the wave equation allowed to construct a very simple

and efficient numerical algorithm which can be used to study properties of seismic sources

(Fink et al., 2000; Kremers et al., 2011). It relays on putting the virtual sources at the receiver

locations (reciprocity principle) and simulating propagation of seismic waves from such virtual

sources assuming as their temporal changes the recorded real signals with reversed time: the last

arriving signal is “resend” as the first one. Resend signals due to a complicated interferences

not only focus in the point where the real source ruptured and at the origin time of the rupture

but also provide very important information on kinematics and dynamics of the rupture process.

It is worth to mentioned at this point that this approach is an example of the back projection

inversion technique as it directly “projects” the observed data onto the values of parameters

used to describe the seismic source. One of the most important feature of the back projection

inversion technique is its very high computational efficiency as it avoids any direct sampling of

the model space. Besides that, using the full waveform as input data allows to proceed cases

with very low Signal to Noise ratio (Steiner and Saenger, 2011) and/or achieved the very high

“super-resolution” much beyond theclassical diffraction limit (Hanafy et al., 2009).

Currently, the practical applications of the time reversal algorithm for seismic source loca-

tion consist of two elements namely, a direct nonlinear back-projection of the recorded signals

onto the location space (re-sending recorded seismograms) followed by searching for the loci at

which the positive waves interference lead to the maximum of the appropriately chosen imaging

field (Larmat et al., 2009).

Unfortunately, this procedure is subjected to many disturbing factors which cause that the in-
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20 CHAPTER 3. TIME REVERSAL MIRRORING

formation about seismic source retrieved this way can be quite errorneous. The two most impor-

tant factors introducing uncertainties into this algorithm are noisy data and limited knowledge

of the velocity and attenuation properties of the medium through which waves are supposed to

be back-in-time propagated. Recently, it has also been pointed out (Kremers et al., 2011) that

some properties of the source are not, or at least are very poorly resolved by this approach. In

such a case an analysis of the uncertainties of the imaging procedure is of the highest importance

(Tarantola, 2005).

The analysis of the resolution and/or accuracy of inversion procedures is usually the very

complicated and time consuming task because it requires an exhaustive exploring of the model

space. Thus, the necessity of performing such analysis using even the modern, very efficient

Monte Carlo sampling algorithms like Markov Chain Monte Carlo (Robert and Casella, 1999)

essentially destroys the most important feature of the time-reversal imaging approach - its ef-

ficiency. Fortunately, this can be avoided when seismic waveforms are inverted for the most

basic seismic source parameters, namely source location. The point is that when re-sending

numerically the recorded seismograms the displacement field is calculated for all points in the

descritized location space during the single forward modelling. Since the displacement field

is used to construct the misfit function defining the a posteriori probability density simulta-

neously with the “re-sending” (back modelling) of recorded data the implicit sampling of the

model space is performed at no additional numerical cost . This is the corner stone of the

proposed algorithm.



Chapter 4

Eikonal Solver: Fast Sweeping Method

Under the high frequency approximation the full wave equation can be split into the eikonal

equation describing spatial propagation of wavefronts and transport equation describing changes

of wave amplitudes. As we are interested here in travel times modeling, we consider only the

eikonal equation which together with the boundary condition at source location Γ reads

∇T · ∇T = 1
v2

T |Γ = 0
(4.1)

where T describes wavefront position in space originating from the source at Γ and v denotes

velocity. This is a special case of the Hamiltonian-Jacobi, hyperbolic type nonlinear equation

for which the term on right-hand side is always positive. For numerical purpose, such equation

can be discretized by using the first-order Godunov upwind type discretization (Zhao, 2005;

Sethian, 1999) For internal grid points this finite difference scheme leads to the following dis-

crete approximation of Eq. 4.1

[

(Ti,j − Txmin)
+]2 +

[

(Ti,j − Tymin)
+]2 = h2s2i,j (4.2)

where i, j are indexes of the grid point xi,j = (xi, yj), h is the grid size (for simplicity the

quadratic grid is assumed), si,j is the value of slowness at grid point (xi,j) (si,j = 1/vi,j) and

the following shorthand notation is used:

Txmin = min(Ti−1,j, Ti+1,j), Tymin = min(Ti,j−1, Ti,j+1) (4.3)

and

(x)+ =

{

x, x > 0

0, x ≤ 0
(4.4)

The Fast Sweeping Algorithm proposed by Zhao (2005) is using the above discretization

and solves the resulting system of nonlinear equation iteratively as follows.

• Initialization: a large positive value is assigned to all Ti,j . Then, for all grid points (xs
i,j)

within the source of waves (it can be a single grid node for a point-like seismic source
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model or an extended area Γ for the finite source model) the boundary condition T (xs) =

0 is set.

• Iterations with alternating sweeping: the following procedure is repeated until the con-

version to stable solution is reached.

– At each grid point (xi,j) not set during the initializations the solution T̃ is computed

using current values of T at neighborhood points and then Ti,j is updated us follows

T new
i,j = min

(

T cur
i,j , T̃

)

(4.5)

where the updating solution T̃ is the solution of Eq. 4.2 and reads

T̃i,j =















min(Txmin, Tymin) + sijh |Txmin − Tymin| ≥ sijh,

Txmin+Tymin+
√

2s2
ij
h2−(Txmin−Tymin)2

2 |Txmin − Tymin| < sijh,

(4.6)

– During one iteration the value of T̃ is recalculated four times with different alternat-

ing orderings of grid sweeping:

a) i = 1 : Nx, j = 1 : Ny

b) i = 1 : Nx, j = Ny : 1

c) i = Nx : 1, j = 1 : Ny

d) i = Nx : 1, j = Ny : 1

. (4.7)

As follows from the above descriptio the proposed scheme shows the numerical complexity

of order O(kN) where N is the total number of the grid nodes and k is a constant depending on

the number of iterations.

The number of iterations to be performed depends on the complexity of the velocity model.

In many cases if the velocity model is reasonably smooth and without large velocity contrasts

only a few (usually 2-3) iterations are sufficient for convergence of the algorithm. The reason

is that each sweep (Eq. 4.7) provides the exact solution in one iteration for one spatial quarter,

provided the characteristics of the eikonal equation do not intersect (Zhao, 2005). This is the

case of smooth velocity models. Moreover, the upwind Godunov difference scheme enforces

the causality of the solution (Sethian, 1999), because the solution at a given grid point is deter-

mined by only those neighborhood points for which T is smaller. This is exactly what happens

(Heughen’s principle) during an advancing of the wavefront. In consequence, the iteration pro-

cedure converges very quickly and the solution is optimally accurate. However, we have to keep

in mind that the used upwind scheme is based on the first order difference stencil. This implies

the first order accuracy of the method.

In figure 4.1 an example of a simulation of wavefront positions for the velocity model of

Rudna mine (vertical section) is shown. The ability of the algorithm to model the complex
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Figure 4.1: The vertical section of the synthetic velocity model and wavefront positions simu-

lated by FSM technique from the hypothetic rockburst (star). Open triangles denote seismome-

ters of the underground seismic network operating in the mine.

wavefront structure, including reflection and refraction effects, is clearly visible. The computa-

tion time for this simulation (2D grid with N = 4 105 grid points) on 4 cores 2.4GHz clocked

Intel processor was about 90 milliseconds.
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TRMLOC algorithm

The existing application of the above-described time reversal technique for hypocenter loca-

tion consists of two steps, namely back propagation (“re-sending”) of recorded signals and

scanning of the model (location) space in order to find the optimum location where all the back-

propagated signals positively interfere (O‘Brien et al., 2011). The algorithm used in this paper

extends the above idea in two aspects. First of all, instead of searching for a point at which the

largest positive interference occurs, we propose to construct the a posteriori probability density

based on the differences of the back-propagated observational data. Thus a full probabilistic

(Bayesian) technique is implemented in the algorithm. Secondly, for the location of sources

with well determined time onsets on a given set of sensors, we do not need to perform a full

waveform back propagation. Instead, we consider only the wavefronts whose propagation in

time is described by the much simpler to solve eikonal equation. The very important conse-

quence of such formulation of the location task is that the most numerically demanding part of

any probabilistic inversion, namely sampling of the a posteriori pdf can be performed implicit.

We propose to construct the a posteriori probability density using the differential misfit

function S̄(m)

S̄(m) =
1

2Ns

∑

i,k;i 6=k

||tim − t
k
m|| (5.1)

based on the difference of the back propagated wavefronts from all considered sensors. In this

equation, tim and t
k
m stand for waveform onsets recorded by i-th and k-th receivers, respectively,

and back-propagated to the point m. Ns is the number of the receivers used (number of avail-

able observational data) and 1/2 takes into account the symmetry of the sum. Following this

assumption, we postulate the a posteriori probability distribution as

σ(m) = const.f(m) exp
(

−S̄(m)
)

(5.2)

The physical intuition behind the above definition of S(m) is quite clear. In an ideal case (no

noise, exact forward modelling) all back-propagated travel times should be equal to the source

origin time (to) at the true hypocenter location point. Thus, the condition for the hypocenter lo-

cation is the equality of all back-propagated arrival times. Due to the presences of observational
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and modeling errors, this condition cannot in general be directly fulfilled and thus a reasonable

solution is to look for the point in space where S(m) gets minimum. Let us note, that as follows

from Eq. 1.1 the origin time to does not enter S(m) and thus an original 4D inversion is reduced

to 3D problem: a search for the hypocenter’s spatial coordinates only.

The idea of using the differential-time form of the misfit function is by no means new and

can be traced back in time to Zhou (1994) and Matsu’ura (1984). In various forms it has

already been implemented in different optimization-based location algorithms under various

names among which the equal difference time (EDT) is the most popular (see, e.g., Lomax

et al., 2009; Font et al., 2004; Zhou, 1994). The EDT formulation relies on searching the point

m for which hyperbolic surfaces defined by the condition

∆i(m)−∆j(m) = t
obs
i − t

obs
j (5.3)

intersect for all pairs of stations (i, j). This condition can be rewritten as t
obs
i − ∆i(m) =

t
obs
j − ∆j(m) for all (i, j), which is actually the condition of equality of all back-propagated

observational time onsets at the hypocenter location. The advantage of using the EDT-type dif-

ferential misfit function relies in removing of origin time from inversion procedure (Matsu’ura,

1984) and also lower sensitivity of location results to velocity model (Font et al., 2004; Wald-

hauser and Ellsworth, 2000; Rudzinski and Debski, 2011; Zhou, 1994). Additionally, in the

developed algorithm, it has also allowed to perform an implicit sampling of the a posteriori

distribution, as discussed latter on. The EDT type misfit function is the cornerstone of the mod-

ern relative location methods, namely the double differences and extended double differences

techniques (Waldhauser and Ellsworth, 2000; Rudzinski and Debski, 2012).

Finding the minimum of S(m) will provide the hypocenter location, so S(m) can serve as

the cost function for any optimization-based location algorithm. Much less obvious is whether

this misfit function can also be used within the probabilistic inversion framework for generating

the likelihood function according to Eq. 5.1. The problem is that the “true” likelihood function

L(m) defined by the probabilistic inverse theory is actually a convolution of probability distri-

butions of observational and modelling errors (Tarantola, 2005; Debski, 2010). Thus, from the

statistical point of view, it describes the statistic of sum of the observed and modeled errors.

Apparently the function L(m) defined by S̄(m) is not such the statistic. It is rather the statistics

of sum of differential errors so the question is if the errors estimated by using this proxy of the

likelihood function are not systematically biased. Although this point has not been clarified yet,

the differential misfit function has already been implemented in some probabilistic location al-

gorithms (Lomax et al., 2000; Rudzinski and Debski, 2011) and we use it also in the TRMLOC

algorithm.

Having defined the a posteriori distribution σ(m) we have to explore the space of model pa-

rameters in order to obtain various characteristics of σ(m) including the position of the global

maximum, checking an existence of secondary maxima, etc. This is the most demanding nu-

merical part of any probabilistic inversion. However, in case of the location task the model

space which has to be sampled is exactly the same space (3D configuration space) as that over

which the forward modelling operator acts. This opens a possibility of performing an implicit
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sampling of the a posteriori distribution simultaneously with solving the forward problem. The

idea is as follows. Assume that the forward modeling method used to calculate ∆i(m) is able

to provide the back-in-time propagated observed time onsets for a set (for example, regular

grided) of spatial points. Then, according to Eq. 5.1, the a posteriori distribution σ(m) can be

immediately calculated with minimum numerical computations for all grid points. This way

we have sampled σ(m) at all these points. If the points form a dense enough, regular set, we

end up with the well sampled σ(m) so we do not need any additional sampling indispensable

in the classical probabilistic inversion. We call this mechanism the implicit sampling. The for-

ward modeling techniques fulfilling the above requirement are the all wave equation or eikonal

solvers based on the finite difference, finite element, spectral elements, or similar numerical

methods (Virieux et al., 2009; Sethian, 1999). Thus, summarizing the above consideration we

propose the algorithm whose flowchart is shown in Fig. 5.1.

• Discretize space m = (Xi, Yj, Zk), i, j, k = 1, 2, . . .

• Set the a priori density function f(m)

• Repeat for each receiver (in parallel)

– back propagate observed time onsets t
obs
i using eikonal (FSM)

solver on defined spatial grid

• calculate S(m) = 1
2Ns

∑

i,k;i 6=k

(tim − t
k
m)

2/Cp2

• determine σ(m) = const.f(m) exp (−S(m))

• calculate statistical estimators mml, mavr , ∆m, evidence, entropy, etc.

• if needed perform inspection of the full σ(m) or marginal a posteriori

distributions

Figure 5.1: The basic steps of the TRMLOC algorithm

One very important feature of the algorithm is its high speed, as will be demonstrated later

on, which follows from:

• reducing inverse problem from 4D to 3D by eliminating event’s origin time from inversion

• employing the modern finite-difference very fast eikonal solver.

• avoiding explicit sampling of the model space: σ(m) is evaluated at each grid nodes

simultaneously with forward modelings

• parallelization of the algorithm
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Let us also note that the backward propagation of the observed time onsets through the back-in-

time forward modeling has to be performed only Ns times - as many as the number of sensors is

used. This is a direct advantage of using the time-reversal and reciprocity invariance principle.

Actually, the TRMLOC algorithm is very similar to the algorithm NLloc developed by

Lomax et al. (2000). Both approaches use the probabilistic inverse approach, eikonal solvers for

forward modelling and similar EDT-based likelihood function. The main differences arise from

using different eikonal solvers (NLloc uses the method of Podvin and Lacomte (1991) while

TRMLOC the Fast Sweeping Method) and from different implementation of the a posteriori

pdf sampler.

The very important element of the TRMLOC algorithm is the eikonal solver which enables

very efficient calculation of the wavefront positions in the entire 3D domain for a general ve-

locity model. Constructing the TRMLOC algorithm, two finite-difference type eikonal solvers

were considered, namely the Fast Marching Method (FMA) developed by Sethian (1999) and

the Fast Sweeping Method (FSM) developed by Zhao (2005). The FMA algorithm exhibits

numerical complexity1 of the order of N log(N), where N is the number of all grid nodes and

is optimal for complex velocity models (Sethian, 1999). The FSM method is faster for smooth

velocity models with numerical complexity proportional to N but it is over-performed by FMA

in cases of complex velocity models. TRMLOC has been designed for a local/regional analysis

when velocity models are relatively smooth so the FSM technique has been selected.

1By numerical complexity we understand here number of floating point operations performed by an algorithm
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Algorithms summary

Being based on general concepts of the modern probabilistic inverse theory, the TRMLOC al-

gorithm exhibits the same level of generality as any other, more traditional Bayesian location

algorithms, However, unlike the classical probabilistic approaches, it performs implicit sam-

pling simultaneously with the forward modeling due to the use of the finite difference based

eikonal solver and EDT type of the misfit function.

The algorithm has also some limitations. First of all, the eikonal solver provides solutions

only for the first arriving seismic phases (or the first arriving P or S waves in case of elastic

waves ). Including other phases within TRMLOC is possible, but it requires using the full

waveform modeling algorithms , or multi-phases extensions to eikonal solver (Hauser et al.,

2008; Rawlinson and Sambridge, 2004). In both cases, however, the numerical efficiency of the

algorithm is lost.

The next limitation of the algorithm is related to the fact that the spatial resolution achieved

by the algorithm is limited by the grid size used by the forward modeling algorithm. Achieving

higher resolution requires a finer spatial grid but this increases the computation time linearly.

Another problem connected to the spatial grid is that the eikonal solver used by TRMLOC is

the first-order differential solver requiring quite fine grid for high numerical accuracy. Using

higher-order solvers or more advanced front propagation techniques (Zhang et al., 2005) may

thus be advisable.

An accumulated experience gathered when using the TRMLOC algorithm shows that the

most time-critical part of the algorithm is calculation of integrated statistical characteristics of

the a posteriori distribution like evidence, entropy, average model, etc. For large grid, with

the number of nodes of order 108 it takes about 70-80% of the whole calculation time. A

remedy to this bottle-necked part of the algorithm is its redesigning using GPGPU technology

which is extremely efficient in this type calculations (Kloc and Danek, 2012; Danek and Debski,

2014). Further efficiency improvement is expected by porting the algorithm, especially the

forward modeling part, to the paralel distributed computational platform, using, for example

MPI paralelization schemata (Quinn, 2008)
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Part II

Technical reference manual
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In this part of the manual technical aspects of the TRMLOC software are provided. We begin

we a short compilation and installing instruction for Linux and others Unix-type platforms.

Next, we explain the floachart of the code, describe in details all parameters controling its

behaviour, and formats of input and output files. Although a lot of work was done to make this

description clear and self-explanatory some points of runing of TRMLOC may still be doubtful

so some examples of input and output files are provided.
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Building and Structure of TRMLOC

7.1 Building TRMLOC

The described in the previous part of the manual TRMLOC algorithm was implemented in

the software application of the same name (trmloc). The application is designed for running

under the Unix/Linux based computers with the full support of paralell computations under the

shared-memory paralelization model and an afford to port trmloc to a standard cluster MPI-

based architectures is undertaken. Newertheless, its use under different operating systems is

possible. The only a problematic part of porting trmloc to non-unix operating system can be a

support of multicore, shared memory parallelization. Actually, trmloc uses the OpenMP (ver

3.*) standard to support the paralelization (Quinn, 2008) which can be very easily switched-off

in case of troubles with instaling it on given platform.

The trmloc application is coded in standard C language and besides OpenMP extension and

corresponding libraries relias only on standard C and Math libreries. Originally developed under

Linux system is compiled by default using GCC compiler throught the standard Make utility.

Compilation under different platform depends on used compiler and development environment.

The standard instalation should run as follow:

1. unpack the source code in selected directory

2. go to the created CURRENT subdirectory

3. edit the Makefile.rul end change the BINDIR to point the directory where the ex-

ecutable is expected to be copied. If the OpenMP support has to be switched off (not

recommended) clean OPEN MP variable by removing -fopenmp from the definition of

OPEN MP and removing -fopenmp from LD FLAG.

4. go to the CURRENT/TRMLOC subdirectory. and type sequence:

> make,

>make install,

> make clean
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5. to verify if compilation and instalation was sucessful type

> trmloc -v

Inspecting the Makefile in the CURRENT/TRMLOC subdirectory shows which source

files are necessary for sucessfull compilation of the code. In case or necessity of re-arrangement

of source code files appropriate changes has to be also in the Makefile.

7.2 Structure of TRMLOC

The trmloc application uses the standard data processing schemata shown in Fig. 7.1

Parameters

OutputInput trmloc

Figure 7.1: Data processing schemata used by trmloc.

The inputp data comprise a velocity model and time onset readings read from two different files.

The output is a set of ASCII files and eventuall messages. Messages are by default send to the

the standard output STD OUT (under Unix/Linux) while error messages are send to standard

error STD ERR channel and can easily be redirected in a standard way. The parameters control-

ling action of TRMLOC are read either from standard input STD INP or from an external file.

In the last case, recommended for the IS-EPOS platform calling trmloc should looks like:

trmloc − P : file name

where file name is the name of the file with controlling parameters and no space between

“-P:” and file name is allowed.
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Setting the parameters

The trmloc subroutine requires some external parameters to control its action, to define in-

put/output files, etc. To make the task of setting the parameters as flexible as possible, we

follow the idea of parameter parsing developed for the TOM-3D software package (Debski,

2002).

The parameters may be provided generally in two different ways. First of all they may be

specified on-line as arguments following the called subroutine:

trmloc arg1 arg2 · · ·

Secondly, they may be read in from an external file. In this case the parameters are sought in

a user specified file whose name is provided as the on-line argument. Finally, it is possible

to mix both approaches and specify some parameters as on-line arguments and leaving the

definition of the remaining ones to the external file. For the purpose of the IS-EPOS platform it

is suggested to declare all necessary parameters throught an external file prepared and verified

through an external platform-dependent software. Thus, if the parameters are defined in the

parameter file file then the trmloc should be called in the following way

trmloc −P :parameter file

.

The on-line arguments and the contents of the read files, form an input list which is scanned

for the parameters recognized by the TRMLOC subroutine. The parameters are identified by

keywords which are several-character names (often being an abbreviation of corresponding

parameter names) which either begin with the minus (-) sign or end with the equal sign (=). The

keywords may be generally classified into three categories depending on the logical meaning of

the parameter they represent.

The first category consists of the keywords that have the form -c where c is a single small al-

phanumeric character. These keywords identify parameters (called switches) that get no values

but are used to enable/disable some actions like disable writing progress reports to the console

(-q), displaying the default file names (-f), listing the available keywords (-h), to name a few
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of the most common ones. The attached parameters are set on/off depending on the presence

of the corresponding keyword in the input parameter list. Thus, for example calling TRM-

LOC with the (-h) on-line argument will cause that all other arguments are disregarded and the

subroutine will only list all recognized keywords.

The second category consists of keywords which are supposed to identify numerical values

to be assigned to the attached parameters. They have the form keyword=value where keyword

is a nickname of the keyword (usually the abbreviated parameter name for easier identification)

and value is the value which will be assigned to the corresponding parameter. No blank space

is allowed either before or after the assignment (=) mark. Using such keywords without an

assigned value will usually terminate the action of the subroutine with an error message.

The next category consists of those keywords whose goal is to provide names of input and

output data files. They have a generic form -C:name where C is a capital letter and name is a

single word (string of characters). The name field is sometimes optional and may be omitted,

which results in the use of predefined, default file names. However, we do not recomend using

this mechanism on IS-EPOS platform as potantialy prone to errors.

The precedence of parsing of the input parameter list for a given keyword is as follows. First

the on-line arguments are parsed. Then the file specified by the user with -P:name is scanned.

When a given keyword is encountered then an associated (if any) numerical value, a file name or

a list of numbers is read, and no further search for an input for the same keyword is performed.

Thus, if a given keyword appears, for example, twice as an on-line argument and in an input

file, only the value specified by the keyword encountered first (here, the on-line argument) will

be taken into account.

The keywords, no matter whether used on-line or in a parameter file may appear in an

arbitrary order. Any other text may also be added to the input parameter file as a comment and

will be ignored provided it includes no keyword pattern as a separate word or a substring. Since

all the keywords include either ”-” or ”=” characters it is advisable not to use these characters in

comments. The parsing mechanism used allows to include almost arbitrary comments into the

file for documentation purposes or to explain the meaning of the parameter setting. Currently

the total size of the parameter file plus (if used) on-line options is limited to 4kB.

Incorrect setting of input parameters may not be easy to detect. If a setting apparently breaks

some implicit rules, for example, a negative value is provided for a parameter that may only be

positive, trmloc terminates with an appropriate error message. However, no exhaustive and

complete check of the consistency of the input data specified through the keyword assignment

is possible. Thus, it is always advisable to check the job output log file to verify how the

parameters were parsed and set.

Table 8.2 provides the complete list of all keywords recognized by the trmloc subroutine. In

this list the we use the keyword syntax convention summarized in table 8.1.
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Table 8.1: The convention used to describe the keywords syntax. -X stands for any keyword that is used

for setting a string/numerical parameter param.

Column: Requested

I [Inactive] Active only when set. If omitted no action is undertaken

O [Optional] Active even if not set - default value is then used

R [Required] Must be set

S [Select] One of the possibilities must be selected

Column: Value

string a string of characters with no blank spaces (a single word)

real a real number

list a list of real numbers enclosed between ” ”

integer an integer number

g/l/· · · a list of possible choices

(a· · ·b) allowed range. Missing b means ∞

Column: Description

STDERR Unix standard error device (usually console)

STDOUT Unix standard output device (usually console)

[·] Default value

8.1 List of parameters

8.1.1 Parameters controling file names

The first group of keywords (-C: . . . -X:) is used to define name of files with input and output

data. Format of these files is described in details in the next section. The requsted file names has

to form a single computer word consisnting of a string of characters with no blank characters

(like space, tabular, new line character, etc). Using characters with codes above 254 (e.g. polish

diacrytic characters) is allowed, but not recommended as can potentially create problems with

opening/accessing files, depending on setting operating system under which trmloc is currently

run. The file names can consists of up to 127 characters. Most of file names is initilized to

default names (see -f) and thus the fname in the setting -C:fnamecan be omitted, However

we do not recomend using this feature during rutine runs of trmloc since it leads to loosing

information about used input data at the post-calculation stage.
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Table 8.2: List of parameters used by trmloc.

Keyword Req. Value Description

-C:fname I,O string Cp listfile (active only with --e)

-D:fname R string input data file

-V:fname R string velocity model

-P:fname R string input parameter file

-L:fname O string output log file

-O:fname O string output pdf

-R:fname O string output residua

-X:fname I,O string Cp curves (active only with --e)

-a O authors info

-e O extended mode

-f O prints default file names

-h O prints parameters/option syntax

-m O enables marginal pdf calculations

-o O prints set values of parameters to STDOUT

-q O silent mode: no messages to STDERR

Fvi= - 0 Input velocity file type (0-TNF)

Fdi= S 0/1 Input data type (ASCII 5/6 column )

Fpo= O,S 0...4 Output PDF format (1D,2D,3D, all marginal PDF

Cme= R a priori variance for X/Y coordinates

Cmz= R a priori variance for Z (depth)

Ia= R,S g/l/c/m norm used for prior distribution

Xap= R real A priori X location

Yap= R real A priori Y location

Zap= R real A priori Z location

Ip= R,S g/l/c/m A posteriori pdf norm [g/l/m/c]

Cp= R real Likelihood variance

Fi= O 0/1/2 Fisher Norm derivative schemata

Fh= O real Fisher Norm FD-derivative step

Es= O string Event description

Cpm= O real Minimum Cp value (active only with --e)

CpM= O integer Maximum Cp value (active only with --e)

Cpi= O integer Cp increment ratio (active only with --e)

Cpf= O 0/1 Cp increment mode 0-arithmetic, 1-geometric

Ftm= O real TT initialization

Fit= O integer No. of G-S itterations

Fsc= O real Gradient scaling

Fec= O real Converence criterion
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8.1.2 Switching parameters

The switching parameters (-a: . . . -q:) hove double meaning. Some of them are for information

purpose only and their use results in printing appropriate messages to standard output and

exiting. To this group belong the following parameters

• -a: - prints author and copyright information

• -f: - prints info about file names and their default values

• -h: - prints a list of all recognized keywords

• -o: - prints a list of all sett parameters

Among these parameters the most often used is -h:, which provides a kind of “online help”

and allows a quick checking of syntax of kewords. On the other hand -o: is very usefull for a

quick verification of values of set parameters and -f: lists the types and suggested and acctual

assigned default file names. Prowided information describes file types (R - for reading, W - for

writing) and if given file name can be automatically initialized (+) or must be exlipcit provided

(-).

The second group of switching parameters is used to control the scope of undertaken calcu-

lations as follows:

• -e: - Enables so called extended mode. In this mode after completing calculations for

given setup of input parameters trmlocperforms additional relocations with different set-

tings of the Cp parameters. The range of examinated Cp is either read-in from an input

file (-C) or generated by trmloc according to settings of (Cpm=,... Cpf=). Selected char-

acteristics of relocation results are saved in the -X file.

• -m: - Enables calculation of characteristics of all marginal distributions. Since it takes

additional computation time can be avoid if no advanced error analysis is required.

Finally, the last switching parameter (-q) controles showing information about calculation

progress to console. If set, trmloc is running in the “silent” mode with no information (except

errors) about calculation progress at all, what slightly speeds up calculations. It is recomended

to use it only during a rutine data processing.

8.1.3 Numerical parameters

This group of parameters provides necessary information for running trmloc and consists of

subgroups defining the a priori setttings, controlling the forward modelling and inversion pro-

cess, and finally indetification of input/output data formats. Their meening is following.

First, the keywords Fvi=, Fdi=, and Fpo= are used to identify formats (types) of input/output

data files. In the current releas only a few types are fully supported, as described in the next



42 CHAPTER 8. SETTING THE PARAMETERS

chapter. For example for the velocity model data Fvi is acually inactive and set Fvi=0 since

only the native for the TOM-3D package formatTNF is currently fully supported.

Another parameter Fdi, defines a type of data file format. Currently the only ASCII column-

orientated format is supported (see next chapter). In the current version Fdi can takes values 0

and 1 only.

The Fpo= parameter controls which a posteriori PDF distributions are stored in the output

(-O) file. It can the following values:

• 0 - (default) 1D and 2D marginals are stored. In most cases this is the most versatile

output format.

• 1 - only 1D marginals are stored what results in a small files but with limited information

contents

• 2 - 2D marginals are stored. This is the appropriate format if epicenter errors are to be

analysed ( like classical “error eplipse”)

• 3 - the full 3D a posteriori pdf is stored what usually results in huge file size.

• 4 - all marginals and a posteriori pdf are stored. Again a size of file is usually huge.

Parameters controlling setting of the a priori solution are Cme=,Cmz=, Ia=, Xap=, Yap=,

and Zap= and their meaning is following

• Cme - postulated uncertainty for the horizontal coordinates X and Y of the a priori model,

• Cmz - postulated uncertainty for the depth coordinate Z of the a priori model,

• Ia - norm used to generate the a priori pdf function. Recognized values are: g - l2 norm

(Gaussian likelihood) - appropriate for a high confidence a priori location, l - l1 norm.

More robust norm enable handling less accurate a priori locations. c - lc Cauchy norm,

and m - lm modified Cauchy norm. The most robust norms which can be used to handle

vogue a priori locations, n - no a priori solution at all.

• Xap=, Yap=, and Zap= - hypocenter coordinates of the a priori location.

The inversion process is directly controlled by two parameters, namely Ip and Cp. The Ip

parameter defines the norm used to generate likelihood function. Recognized values are:

• g - l2 norm (Gaussian likelihood) - appropriate for high quality data and accurate forward

modelling (fine grid),

• l - l1 norm. More robust norm assuring a more reliable solution if outliers are present in

data or corse modelling grid is used,

• c - lc Cauchy norm,
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• m - lm modified Cauchy norm. Bothc and m are the most robust norms which can be used

to invert low quality data.They use often lead to an overestimation of inversion errors,

The trmloc allows to calculate the Fisher matrix which can be used in advanced analysis of

inversion uncertainties. Two parameters, namely Fi and Fh controls this part of calculations.

Fi can takes value 0,1,2 which corresponds to skipping calculation (0), using first order (3-

points) central finite difference schemata (Fi=1) or 5-points respectivally (Fi=2). The second

parameter Fh defines a finite difference step.

Finaly, trmloc provides a mechanism of inversion/location annotation by adding an arbi-

trary description of given run by a single word defined by the Es keyword Es=description.

In the extended mode trmloc performs relocations of event at hand for various settings of Cp.

The list of used Cp values can either be read-in from an external file (-C) or defined by providing

minimum (Cpm parameter) and maximum (CpM parameter) values of used Cp together with

an increment step defined by Cpi. The generated list of Cp can be either algebraic serious or

geometric one defined by Cpf=0/1 respectivally.

Finally, there is a group of parameters which allow to controle the forward modelling (FSM)

procedure. Those parameters are Ftm, Fit, Fsc, and Fec. Thy control initilalization (Ftm), max-

imum number of Gauss-Lobbato iterations (Fit - default is 20), gradient scaling (Fsc, default no

scaling), and convergion accuracy (Fec - default is 0.01). The meaning of the last parameter is

that if RMS differences between two subsquent full sweeps solutions differe by less than Fec the

itteration procedure of FSM terminates. The default values are robust enough to handle most of

practical 3D velocity models so those parameters typically do not need to be changed.
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Chapter 9

File formats

9.1 Input files

TRMLOC requires following input data:

• control parameters

• observational travel time data,

• station coordinates,

• velocity model,

• computational grid specifications

.

They are provided in three different input files: input velocity model (-V), data file (-D) and

parameters file (-P). All input/output files used by the current version of TRMLOC procedure

are ASCII files. Their formats are described in the following subsections.

9.1.1 Controll parameters file (-P)

This is a free-style ASCII file which contains settings of all control parameters in form Key=value,

-key, -Key:file name separated by spaces, empty lines or any comments (strings). The only re-

striction imposed on the format of the file is that the maximum number of read characters (size

of file in bytes) have to be less then 4040. In addition the length of each file name is restricted

to 127 characters. A care must be taken to avoid using keywords in comments. If it hppens,

TRMLOC parser can make a wrong value assigment to given parameters. It is recomended

always to verify settings of parameters by inspecting the output log file. An example of the

input parameter file is shown in Fig. 10.1.

By default TRMLOC expects that all dimensional parameters and input data are express in

SI system ( meters, seconds, etc.) Thus, the arrival times defined in data file are in seconds,

45
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Table 9.1: Description of the input data file format.

Column Format Description

1 integer station/sensor Id number

2 real station X coordinate

3 real station Y coordinate

4 real station Z coordinate

5 real wave arrival time

station coordinates, are in meters with respect to a local coordinate system and used velocity

is expressed in meters per second. Similarly, Xap, Yap, Zap and Cm and Cz are also in meters

and Cp in seconds. Change to other length/time units (for example, centimeters, kilometers,

miliseconds, etc.) is possible but all above parameters must be adjusted accordingly

9.1.2 Input data file (-D)

The input data file provides the observational travel time data and station location information

This ASCII file consists of a number of lines composed of 5 (Fdi=0) or 6 (Fdi=1) columns: one

integer (first column) and 4 (5) real numbers. Each line corresponds to an arrival time of a

seismic phase (the same for all entries) recorded by a given station. The meaning of each of the

columns is explained in table 9.1. The selection between 5 and 6 columns format is done on the

base of Fdi keyword. The optional sixth column allows to assign a different data variance to

each of the stations/sensors separately which offers the possibility of an independent evaluation

of data quality for each station. The floating point precision used to describe station locations,

arrival times and data variances, if used, is arbitrary.

In current implementations trmloc reads the entire data file and evaluates the number of

data entries by a number of read lines. It DOES NOT PERFORM any data verification for

data coherence, data duplications, etc. If given line consists of less then 5 (6) entries TRM-

LOCreports error and exits. An example of the input data file for the default setting Fdi=0 is

shown in Fig. 10.2.

9.1.3 Velocity data file (-V)

This file has by now the most complex structure in order to accomodate in the simplest way all

practically important velocity models. In the current release only the native TNFdata format is

supported which correspond to setting by default Fvi=0. 1

In the TNF format the file consists of a header and a data block as shawn in Fig. 9.1.

The header has a fixed format and consists of 9 lines terminated by end-of-line (

n) character and begining with # character in the first column. In all header lines after the #

1The key Fvi= is inactive in the current release.
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....

Header

DESCRIPTION

TNF
DIMENSIONS
FORMAT

STRUCTURE
SIZE
XAXIS
YAXIS
ZAXIS

Data

Figure 9.1: General structure of the TNF velocity model format.

mark the identification string appears and is followed by user set appropriate numerical values.

The meaning of the identification strings listed in order of their apearence in the header and

expected associated values are shown in table 9.2.

Most of parameters defined in the header part of the file are self-explanatory. The comment

is only required for the STRUCTURE parameter. This parameter controls type of used grid.

If the set value is 0 the structred (cubic) grid is assumed with grid node distances dx, dy

dz. Setting the value 1 assumes potentially arbitrary grid nodes distribution. This type of

unstructered grids (time scales) are not fully supported yet.

The heder is followed by the data block. Structure of the the data block depends on values

of DIMENSION and STRUCTURE defined in the header.

• DIMENSION = 0

This is a case of constant velocity model. The block data consists of a single real value

V which is assigned to each grid node.

• DIMENSION = 1

This is a case of 1D velocity model. The model consists of Nz-1 homogeneous horizon-

tal layers. The block data contains now Nz real values V1 V2 · · ·VNz−1 in arbitrary

arrangement (line, column, mixed).

• DIMENSION = 2
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Line String Description Values Format

1 TNF TNF format 1.0 fixed

2 DIMENSION dimension of the model 0/1/2/3 integer

3 FORMAT type of Block DATA ASCII fixed

3 DESCRIPTION model description up to 255 characters

5 STRUCTURE type of grid 0/1 integer

6 SIZE No of nodes Nx Ny Nz Ng 4 × integer(long)

7 XAXIS X-axis description xmin xmax dx 3 × real

8 YAXIS Y-axis description ymin ymax dy 3 × real

9 ZAXIS Z-axis description zmin zmax dz 3 × real

Table 9.2: .

This is a case of 2D velocity model. In this class of models the vellocity is assumed to

change along x and z coordinates (one horizontal and depth) dimensions and remains

constant along y. All y=const sections are identical. The block data consists now of

Nx × Nz real values Vix,iz asigned to nodes (ix, iy, iy=any) arrange in the order of in-

creasing Nx and Nz : V0,0 V1,0 . . . VNx−1,0 V0,1 . . . VNx−1,1 V0,2 . . . VNx−1,Nz−1 The data

arrangement (line, column, mixed) is arbitrary.

• DIMENSION = 3

This is a case of the full 3D velocity model. The block data consists now of Nx × Ny×

real values Vix,iz asigned to nodes (ix, iy, iy) arrange in the order of increasing Nx, Ny,

and Nz :as shown in Fig. 9.2. The data arrangement (line, column, mixed) is arbitrary.

V0,0,0 V1,0,0 · · · VNx−1,0,0

V0,1,0 V1,1,0 · · · VNx−1,1,0

...

V0,Ny−1,0 V1,Ny−1,0 · · · VNx−1,Ny,0

V0,0,1 V1,0,1 · · · VNx−1,0,1

V0,1,1 V1,1,1 · · · VNx−1,1,1

...

V0,Ny−1,1 V1,Ny−1,1 · · · VNx−1,Ny−1,1

...

V0,Ny−1,Nz−1 V1,Ny−1,Nz−1 · · · VNx−1,Ny−1,Nz−1

Figure 9.2: Arrangment of values in the block data for the 3D velocity model.

• STRUCTURE = 1

In this case of the full 3D velocity model is assumed and data block consists of lines with

grid node coordinates and assigned velocity values. This format is shown in Fig. 9.3.
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In the current version of TRMLOC only the regular grids are supported, thus this for-

mat reduces efficiently to the 3D model (DIMENSION = 3) but with an explicite given

coordinates of each grid node.

x0 y0 z0 V

x1 y0 z0 V
...

xNx−1 y0 z0 V

x0 y1 z0 V
...

xNx−1 yNy−1 z0 V

x0 y0 z1 V
...

xNx−1 yNy−1 zNz−1 V

Figure 9.3: Arrangment of values in the block data for the 3D velocity model defined over an

unstructured grid (STRUCTURE = 1)

If number of data read-out from the data-block does not fit the number of grid nodes define

in the header (SIZE line) TRMLOC reports error and exits. Also, if any read-out velocity is

non-positive all error is reported and program exits.

9.1.4 Cp list file (-C)

If TRMLOCis run in the exended mode (-e is set) a range of Cp values for which a posteriori

corresponding solutions are calculated can be read out from a file identified by the -C:fname

keyword. This file contains in the first line a number of used (to be read-out) Cp followed by

given Cp in subsquent lines. An example of such file is shawn in Fig. 10.3.

9.2 Output files

9.2.1 Output log file (-L)

The output log file is a formatted ASCII file which provides the exhaustive information on given

run of TRMLOC including numerical values of obtained point-like solutions like maximum like-

lihood solution, average solution, and error estimates. It also reports set values of all signifi-

cant parameters controling given calculationa. It consists of a “heder” followed by 14 named

sections as it is shown in fig. 10.4. The begining part of the file consists of 5 lines “header”

providing information about the TRMLOC version, date of run, computational time (CPU line)

used memory (does not work on all platforms) and an identification of processed event (EVENT
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line) define by Es= keyword. The following sections are line-formated with an unique identifica-

tion string commencing with # character at the beginig of the line. Important numerical values

including obtained solutions appear mostly as the last entry in a given line and thus are easily

retrivable by external software including standard unix shell tools.

Some information provided in the LOG file are self-explanatory like, for example, Data

entry at the begining of the file, names of different segments, file names, etc. The meaning of

other important parameters is explained in table 9.3 where parameters are listed in order they

apper in the file. The parameters listed in the LOG file which are not implemented yet in the

current version of TRMLOCȧre skipped.

We also skip description of two sections of the LOG file, namely IO FORMATS (which

describes features not fully implemented yet) and PARALELIZATIONS which is purelly infor-

mative.

Table 9.3: Selected parameters reported in the LOG file.

Line Format

FSM SETTING

#H1 type (2D or 3D) used eikonal solver

#H2 initialization value for eikonal solver (should be large positive value)

#H3 maximum number of iterations

#H4 scaling (internal option for debuging only)

#H5 accuracy of itteration procedure

DATA

#D0 Number of data (stations)

#D1 - #D3 span of station network coordinates

#D-0,#D-1 ... slongtabletations ID number and coordinates

VELOCITY MODEL

#V0 Model description (read-out from the -V file

#V1 -#V4 simple statistics of the model

FSM TRM MODELLING

#M-0 -#M-1, ... description of the convergense of FSM solver for each data (station) modelling

INVERSION SETUP

#I1 used Cme

#I2 used Cmz

#I3 used Cp

In case of extended mode the values of calculations for different Cp are

reported only in the outpu -X file. The solutions reported in the log file

as well as provided by the residua -R and output pdf file -O refers to this

value of Cp.

#I4 used norm for a priori pdf

#I5 used norm for a priori pdf

#I6 -#I8 a priori location

#I9 order of FD approximation for Fisher matrix calculation
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Table 9.3: Selected parameters reported in the LOG file.

#Ia step for FD Fisher matrix calculation

EXTENDED MODE

#X1 - #2 minimu and maximum values of Cp

#X3 constant ratio/distnce used to generate Cp list as geometric/arithmetic series

#X4 geometriclist (1), arithmetic (0)o type of Cp list

#X5 length of the Cp list

INVERSION MEASURES

#O1 log of evidence

#O2 a posteriori entropy

#O3 Fisher measure

#O4 Information about Fisher measure calculations

POINT SOLUTIONS

#C1 minimum of the missfit function

#C8 - #Cd maximum likelihood and average solutions

#Ce - #Cf event origint time (with respect to time onsets of data)

COVARIANCE

#E1 - #E6 elements of the a posteriori covariance matrix

#E7 variance of origin times for MLL solution

#E8 variance of origin times for AVR solution

MARGINAL SOLUTIONS

#S1 - #Sc

Hypocenter coordinates estimators for MLL and AVR solutions calcu-

lated from different marginal PDF distributions. Disp stands for an

inversion error for given coordinate and Rml rms and Rml avr are

root mean squares residua for MLL and AVR solutions.

9.2.2 Output a posteriori pdf file (-O)

The file containing the output a posteriori probability density distributions has a context-dependent

format depending on the Fpo parameter. It consists of segments corresponding to one dimen-

sional (1D) , two dimensional (2D) marginal distributions and the full three dimensional (3D)

a posteriori distribution each with its own format. Each segment is uniquelly describe by an

identification string corresponding to a given a posteriori distribution. They are listed in ta-

ble 9.4. Depending on setting Fpo parameter only 1D (Fpo=1), 2D (Fpo=2), 3D (Fpo=3)

or all (Fpo=4) segments appear in the output file. The format for which segment is shown in

table 9.5 All but first columns (segment identifications) are real numbers of arbitrary floating

point precision.

An example of fragments of the a posteriori pdf output file for setting Fpo=4 Fig. 10.5.
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Table 9.4: Abreviations of a posteriori pdf names used to identify different segments in the output (-O)

file

Abbreviation Dimension Description

1D-X 1 σX(x)

1D-Y 1 σY (y)

1D-Z 1 σZ(z)

2D-XY 2 σXY (x, y)

2D-XZ 2 σXZ(x, z)

2D-YZ 2 σY Z(y, z)

3D-XYZ 3 σ(x, y, z)

Table 9.5: Format of the PDF segments in the output pdf (-O) file.

Segment ID Columns

2 3 4 5

1D-X x σx(x)

1D-Y y σy(y)

1D-Z z σz(z)

2D-XY x y σxy(x, y)

2D-XZ x z σxz(x, z)

2D-YZ y z σyz(y, z)

3D-XYZ x y x σ(x, y, z)

9.2.3 Output residua file (-R)

The last output file generated by TRMLOC is the file containing residua data for the maxi-

mum likelihood and average solutions for the full and (if -m is set) all marginal a posteriori

distributions. The file begin with a single header line marked by the # followed by segments

corresponding to solutions for the full (XYZ), 1D marginals (X, Y, Z) and 2D marginal (XY, XZ,

YZ) pdf distributions. The meaning of each of the columns in the file is explained in table 9.6.

Finally, an example of the a posteriori residua file is shawn in Fig. 10.6.

9.2.4 Extended mode output file (-X)

If TRMLOC is run in the so called extended mode (-e is set) then the additional output file

identified by -X keyword is creating. It contains selected characteristics of a posteriori solutions

calculated for different Cp parameter. The file begins with two header lines marked by the #

character at the begining of each line with a simpliefied description following dataorganized in

columns. The meaning of each data column in the file is explained in table 9.7 and an example
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Table 9.6: Description of the output residua file format.

Column Format Description

1 string marginal pdf identification

2 integer station ID number

3 real measured time onset (data)

4 real time onset calculated for MLL solution

5 real time onset calculated for AVR solution

6 real propagation time from the MLL locationn

7 real propagation time from the AVR location

8 real RMS residua for MLL solution

9 real RMS residua for AVR solution

10 real data variance

of such a file is shawn in Fig. 10.7.
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Table 9.7: Extended mode output file format. The file begins with two header lines marked by

the # character at the begining of each line followed by lines consisting of 13 columns.

Column Format Description

1 real Cp

2 real Entropy

3 real Evidence

4 real Fisher info.

5 real RMS residua

6 real X MLL solution

7 real Y MLL solution

8 real Z MLL solutio

9 real Origin time

10 real Ex errors

11 real Ey errors

12 real Ez errors



Chapter 10

Examples

10.1 File formats

In this section examples of formats of input/output files used by TRMLOC are gathered.

Event description: Es=9992

Files:

Log file -L:LOG/R-9992_h10.log

Output PDF -O:PDF/R-9992_h10.apo

Parameter file -P:trmloc.rcp

Data -D:TMP/D9992.dat

Velocity model -V:TMP/V9992.vel

Residua -R:RES/R-9992_h10.res

Formats:

Fdi=0 (the same data quality)

Err=0 error message format

Fpo=1 (save only 1D PDF)

Fvi=0 (dafult TNF native format - V=const)

Calculate all marginals:

-m

-q (no messages to std_out)

Cm=2000 a priori (horizontal uncertainties)

Cz=500 a priori (vertical uncertainties)

Cp=0.02 data variance

Norms:

Ia=g

Ip=g

A_priori solution:

Xap=12963

Yap=7108

Zap=350

Figure 10.1: An example of the TRMLOC control parameters file (see text for description).

55
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26 12857 7299 992 0.05273

10 12330 5850 928 0.17673

7 13197 8003 1006 0.19473

19 11748.4 7474.8 954.4 0.23073

Figure 10.2: An example of the TRMLOC input data file (see text for description).
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Figure 10.3: An example of the input “CPO” file defining the values of Cp for which TRMLOC calcu-

lates solutions when runing in the extended mode.
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**** LOG of trmloc (v.4.1.2)****

 Date   : Fri Feb 13 20:17:52 2015
 CPU    : 0 h 0 min 32 sec.
 Memory : 0 [Gb]
 Event  : 9992 
=================================
 FILES 
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
 #F0  Cp list file        : 
 #F1  Log file            : LOG/R−9992_h10.log
 #F2  Output PDF          : PDF/R−9992_h10.apo
 #F3  Parameter file      : trmloc.rcp
 #F4  Data                : TMP/D9992.dat
 #F5  Velocity model      : TMP/V9992.vel
 #F6  Residua             : RES/R−9992_h10.res
 #F7  Cp curves           : trmloc.ext

 IO FORMATS 
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
 #A0 Input data : 0 
 #A1 Velocity   : 0 
 #A2 Output PDF : 1 

 PARALELIZATIONS 
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
 #P1 OMP model      : 1 
 #P2 No. of procs.  : 12 
 #P3 No. of threads : 12 

 FSM SETTING
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
 #H1 3D modeling    : yes 
 #H2 TT init        : 1e+08 
 #H3 MAX GS itter.  : 20 
 #H4 Scaling        : −1 
 #H5 Stopping value : 0.1 

 DATA  
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
 Desc: Plain ASCII table
 #D0 Stations  : 4 
 #D1 xm/xM     : 11748.4         13197          
 #D2 ym/yM     : 5850            8003           
 #D3 zm/zM     : 928             1006           
 #D4 ... STN ..... X ...............  Y  ...........  Z
 #D−0     26    12857              7299              992             
 #D−1     7     13197              8003              1006            
 #D−2     10    12330              5850              928             
 #D−3     19    11748.4            7474.8            954.4           

 GRID DESCRIPTION
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
 #G0 No. of grid nodes:   9.08268e+06 
 #G1 .... min  ............. Max  ......... h ....... N_nodes 
 #G2  X:  11230            13700            10          247    
 #G3  Y:  5340             8510             10          317    
 #G4  Z:  350              1510             10          116    

 VELOCITY MODEL
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
 #V0 Model  :   Format: 0 header line  with const V 
 #V1  V_min : 5900
 #V2  V_max : 5900
 #V3  V_avr : 5900
 #V4  V_disp: 0

 FSM TRM MODELLING 
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
 #M0    V_SRC  Itter.   RMS_CONV 
 #M−0     26     3      4.91e−03 
 #M−1     7      3      6.92e−03 
 #M−2     10     3      6.75e−03 
 #M−3     19     3      5.77e−03 

 INVERSION SETUP
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
 #I1 A priori var. [Cme] : 500 
 #I2 A priori var. [Cmz] : 500 
 #I3 A poster. var. [Cp] : 0.01 
 #I4 A priori norm       : g 
 #I5 A poster. norm      : g 
 #I6 X_apr               : 12963           
 #I7 Y_apr               : 7108            
 #I8 Z_apr               : 350             
 #I9 FI_fd_order         : 1 
 #Ia FI_h [*Cp]          : 0 

 Cp curves

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
 #X1 Cp_min       : 0 
 #X2 Cp_max       : 0 
 #X3 Cpf          : 0 
 #X4 Cpi          : 0 
 #X5 CpN          : 0 

 INVERSION MEASURES
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
 #O1 Log(Z)         : 7.68187 
 #O2 Entropy (H)    : 15.415 
 #O3 Fisher_info    : 61686.3 
 #O4 Warnings       : FI_h  automatically set cp/100 

 POINT SOLUTION
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
 #C0 S(m)_min            : 6.32242 
 #C1 Log(Z)              : 7.68187 
 #C2 R_ml (T^obs −T^syn) : 0.0100563 
 #C3 R_av (T^obs −T^syn) : 0.0100563 
 #C4 P_max_mll           : 9.23792e−07 
 #C5 P_max_avr           : 0 
 #C6 H (post/non_inf)    : 15.415 
 #C8 X_ml                : 12930 
 #C9 X_av                : 12932.371 
 #Ca Y_ml                : 7000 
 #Cb Y_av                : 7005.7806 
 #Cc Z_ml                : 980 
 #Cd Z_av                : 980.53235 
 #Ce To_ml               : −0.26756053 
 #Cf To_av               : −0.26756053 

 COVARIANCE 
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
 #E1  E_xx             : 40.2521 
 #E2  E_yy             : 27.5217 
 #E3  E_zz             : 71.2635 
 #E4  R_xy             : −0.425188 
 #E5  R_xz             : −0.0645267 
 #E6  R_yz             : −0.0446273 
 #E7  D_To_ml          : 0.0100563 
 #E8  D_To_av          : 0.0100563 

 MARGINAL SOLUTIONS
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
  ID    PDF      Mll           Avr         Disp      Rml_rms    R_av_rms
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
 #S1_x  p(xyz)  12930        12932.371     6.344       0.01006    0.0101   
 #S2_y  p(xyz)  7000         7005.7806     5.246       0.01006    0.0101   
 #S3_z  p(xyz)  980          980.53235     8.442       0.01006    0.0101   
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
 #S4_x  p(x)    12930        12932.371     6.344       0.01006    0.0225   
 #S5_y  p(y)    7010         7005.7806     5.246       0.01008    0.0225   
 #S6_z  p(z)    990          980.53235     8.442       0.01004    0.0101   
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
 #S7_x  p(xy)   12930        12932.371     6.344       0.01008    0.0225   
 #S8_y  p(xy)   7010         7005.7806     5.246       0.01008    0.0225   
 #S9_x  p(xz)   12930        12932.371     6.344       0.01006    0.0101   
 #Sa_z  p(xz)   980          980.53235     8.442       0.01006    0.0101   
 #Sb_y  p(yz)   7000         7005.7806     5.246       0.01006    0.0101   
 #Sc_z  p(yz)   980          980.53235     8.442       0.01006    0.0101   
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
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1D-X 12450 0

1D-X 12460 0

1D-X 12500 6.89336e-313

1D-X 12510 2.66177e-307

.

.

.

1D-Y 5730 1.43752e-306

1D-Y 5740 1.96329e-300

1D-Y 5750 2.48219e-294

.

.

.

1D-Y 8490 0

1D-Y 8500 0

1D-Z 420 0.00315202

1D-Z 430 0.00314822

.

.

.

1D-Z 1520 0.00536521

2D-XY 9260 5840 0

2D-XY 9280 5840 0

2D-XY 9300 5840 0

2D-XY 9320 5840 0

2D-XY 9340 5840 0

.

.

.

2D-XZ 9260 20 0

2D-XZ 9280 20 0

2D-XZ 9300 20 0

.

.

.

2D-YZ 8380 1160 4.5722e-08

2D-YZ 8400 1160 8.38709e-09

.

.

.

2D-YZ 11080 1520 0

3D-XYZ 9260 5840 20 0

3D-XYZ 9280 5840 20 0

3D-XYZ 9300 5840 20 0

.

.

.

Figure 10.5: An example of parts of the TRMLOC output PDF file. Each marginal PDF is identify by

an appropriate identification string in the first column (see text for description).



10.1. FILE FORMATS 59

# PDF STC Tobs Tsyn_ml Tsyn_av TT_ml TT_avr R_ml R_av Cd

XYZ 26 0.182 0.182 0.176 0.177 0.160 0.000 0.006 1

XYZ 10 0.256 0.258 0.255 0.253 0.240 -0.001 0.000 1

XYZ 7 0.256 0.255 0.256 0.251 0.241 0.001 -0.000 1

XYZ 23 0.290 0.290 0.288 0.286 0.272 0.000 0.002 1

XYZ 43 0.310 0.313 0.315 0.308 0.299 -0.002 -0.004 1

XYZ 19 0.338 0.340 0.343 0.335 0.327 -0.001 -0.004 1

X 26 0.182 0.182 0.180 0.177 0.177 0.000 0.002 1

X 10 0.256 0.258 0.261 0.253 0.258 -0.001 -0.004 1

X 7 0.256 0.255 0.254 0.251 0.251 0.001 0.002 1

X 23 0.290 0.290 0.293 0.286 0.291 0.000 -0.003 1

X 43 0.310 0.313 0.309 0.308 0.307 -0.002 0.001 1

X 19 0.338 0.340 0.342 0.335 0.339 -0.001 -0.003 1

Y 26 0.182 0.183 0.180 0.178 0.177 -0.000 0.002 1

Y 10 0.256 0.257 0.261 0.252 0.258 -0.000 -0.004 1

Y 7 0.256 0.257 0.254 0.252 0.251 -0.000 0.002 1

Y 23 0.290 0.289 0.293 0.284 0.291 0.001 -0.003 1

Y 43 0.310 0.313 0.309 0.309 0.307 -0.002 0.001 1

Y 19 0.338 0.341 0.342 0.336 0.339 -0.002 -0.003 1

Z 26 0.182 0.183 0.176 0.180 0.160 -0.000 0.006 1

Z 10 0.256 0.258 0.255 0.255 0.240 -0.001 0.000 1

Z 7 0.256 0.255 0.256 0.253 0.241 0.001 -0.000 1

Z 23 0.290 0.290 0.288 0.287 0.272 0.000 0.002 1

Z 43 0.310 0.313 0.315 0.310 0.299 -0.002 -0.004 1

Z 19 0.338 0.340 0.343 0.337 0.327 -0.001 -0.004 1

XY 26 0.182 0.183 0.180 0.178 0.177 -0.000 0.002 1

XY 10 0.256 0.257 0.261 0.252 0.258 -0.000 -0.004 1

XY 7 0.256 0.257 0.254 0.252 0.251 -0.000 0.002 1

XY 23 0.290 0.289 0.293 0.284 0.291 0.001 -0.003 1

XY 43 0.310 0.313 0.309 0.309 0.307 -0.002 0.001 1

XY 19 0.338 0.341 0.342 0.336 0.339 -0.002 -0.003 1

YZ 26 0.182 0.182 0.176 0.179 0.160 0.000 0.006 1

YZ 10 0.256 0.258 0.255 0.254 0.240 -0.001 0.000 1

YZ 7 0.256 0.255 0.256 0.252 0.241 0.001 -0.000 1

YZ 23 0.290 0.290 0.288 0.287 0.272 0.000 0.002 1

YZ 43 0.310 0.313 0.315 0.309 0.299 -0.002 -0.004 1

YZ 19 0.338 0.340 0.343 0.336 0.327 -0.001 -0.004 1

XZ 26 0.182 0.182 0.176 0.179 0.160 0.000 0.006 1

XZ 10 0.256 0.258 0.255 0.254 0.240 -0.001 0.000 1

XZ 7 0.256 0.255 0.256 0.252 0.241 0.001 -0.000 1

XZ 23 0.290 0.290 0.288 0.287 0.272 0.000 0.002 1

XZ 43 0.310 0.313 0.315 0.309 0.299 -0.002 -0.004 1

XZ 19 0.338 0.340 0.343 0.336 0.327 -0.001 -0.004 1

Figure 10.6: An example of the TRMLOC output residua file. The identification key in the first column

indicates for which (marginal) PDF distribution given residua were calculated (see text for description).

The first, header line is identify by the # symbol and segments are separated by empty line.
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#

1.00e-03 7.30e+00 -4.47e+02 9.06e+06 9.21e-03 1.29e+04 6.79e+03 9.85e+02 -2.10e-02 4.15e+00 2.50e+00 2.67e+00

5.00e-03 1.61e+01 1.06e+01 4.97e+04 1.47e-01 1.12e+04 5.34e+03 4.25e+02 -2.41e-01 5.18e+01 3.01e+01 1.05e+02

1.00e-02 2.01e+01 1.85e+01 8.09e+02 1.47e-01 1.12e+04 5.34e+03 4.25e+02 -2.41e-01 2.32e+02 1.51e+02 2.70e+02

2.00e-02 2.02e+01 1.87e+01 6.24e+02 1.47e-01 1.12e+04 5.34e+03 4.25e+02 -2.41e-01 2.44e+02 1.64e+02 2.72e+02

4.00e-02 2.05e+01 1.91e+01 3.77e+02 1.47e-01 1.12e+04 5.34e+03 4.25e+02 -2.41e-01 2.66e+02 1.92e+02 2.76e+02

6.00e-02 2.06e+01 1.92e+01 2.95e+02 1.47e-01 1.12e+04 5.34e+03 4.25e+02 -2.41e-01 2.77e+02 2.08e+02 2.77e+02

8.00e-02 2.09e+01 1.95e+01 1.82e+02 1.47e-01 1.12e+04 5.34e+03 4.25e+02 -2.41e-01 2.99e+02 2.43e+02 2.79e+02

1.00e-01 2.10e+01 1.96e+01 1.43e+02 1.47e-01 1.12e+04 5.34e+03 4.25e+02 -2.41e-01 3.10e+02 2.62e+02 2.80e+02

2.00e-01 2.17e+01 2.03e+01 1.83e+01 1.47e-01 1.12e+04 5.34e+03 4.25e+02 -2.41e-01 4.14e+02 4.32e+02 2.81e+02

3.00e-01 2.20e+01 2.05e+01 3.10e+00 1.47e-01 1.12e+04 5.34e+03 4.25e+02 -2.41e-01 4.64e+02 5.14e+02 2.81e+02

4.00e-01 2.21e+01 2.07e+01 6.71e-01 1.47e-01 1.12e+04 5.34e+03 4.25e+02 -2.41e-01 4.87e+02 5.54e+02 2.80e+02

5.00e-01 2.22e+01 2.07e+01 3.95e-01 1.47e-01 1.12e+04 5.34e+03 4.25e+02 -2.41e-01 4.92e+02 5.63e+02 2.80e+02

Figure 10.7: An example of the TRMLOC output CPO file (extended mode) gathering metacharacteristics of the a posteriori PDF and basic maximum

lilelihood solutions calculated for a range of Cp values (see text for description). The first two header lines begin with the # symbol as the first character

in a line.
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