On the Nature of Reservoir-induced Seismicity

Talwani, Pradeep (1997) On the Nature of Reservoir-induced Seismicity. In: Seismicity Associated with Mines, Reservoirs and Fluid Injections. Pageoph Topical Volumes . Birkhäuser Basel, pp. 473-492. ISBN 978-3-0348-8814-1

Full text not available from this repository.
Official URL: http://dx.doi.org/10.1007/978-3-0348-8814-1_8

Abstract

In most cases of reservoir-induced seismicity, seismicity follows the impoundment, large lake-level changes, or filling at a later time above the highest water level achieved until then. We classify this as initial seismicity. This “initial seismicity” is ascribable to the coupled poroelastic response of the reservoir to initial filling or water level changes. It is characterized by an increase in seismicity above preimpoundment levels, large event(s), general stabilization and (usually) a lack of seismicity beneath the deepest part of the reservoir, widespread seismicity on the periphery, migrating outwards in one or more directions. With time, there is a decrease in both the number and magnitudes of earthquakes, with the seismicity returning to preimpoundment levels. However, after several years some reservoirs continue to be active; whereas, there is no seismicity at others. Preliminary results of two-dimensional (similar to those by Roeloffs, 1988) calculations suggest that, this “protracted seismicity” depends on the frequency and amplitude of lake-level changes, reservoir dimensions and hydromechanical properties of the substratum. Strength changes show delays with respect to lake-level changes. Longer period water level changes (~ 1 year) are more likely to cause deeper and larger earthquakes than short period water level changes. Earthquakes occur at reservoirs where the lake-level changes are comparable or a large fraction of the least depth of water. The seismicity is likely to be more widespread and deeper for a larger reservoir than for a smaller one. The induced seismicity is observed both beneath the deepest part of the reservoir and in the surrounding areas. The location of the seismicity is governed by the nature of faulting below and near the reservoir.

[error in script]
Item Type: Book Section
Uncontrolled Keywords: Mechanism of reservoir-induced seismicity, Koyna, Monticello Reservoir, Lake Mead
Subjects: Inducing technology > Reservoir impoundment
Methodology > Method and procesing
Project: IS-EPOS project