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Abstract

This paper provides a generic equation for the evaluation of the maximum regional earthquake magnitude mmax. The equation is capable of generating solutions in different forms, depending on the assumptions of the statistical distribution model and/or the available information about past seismicity. It includes the cases (i) when earthquake magnitudes are distributed according to the doubly-truncated Gutenberg-Richter relation, (ii) when the empirical magnitude distribution deviates moderately from the Gutenberg-Richter model, and (iii) when no specific model of the magnitude distribution is assumed.

Both synthetic, Monte-Carlo simulated seismic event catalogues, and actual data from Southern California, are used to demonstrate the procedures given for the evaluation of mmax. 

The three estimates of mmax for Southern California, obtained by the three procedures mentioned above are respectively: 8.32 ( 0.43, 8.31 ( 0.42 and 8.34 ( 0.45. Since the third procedure applied is non-parametric and does not require specification of the functional form of the magnitude distribution, its estimate of the maximum magnitude is considered more reliable than the other two, which are based on the Gutenberg-Richter model.
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INTRODUCTION

This work is aimed at earthquake engineering, with the purpose of providing a tool that allows the assessment of the value of the maximum regional earthquake magnitude mmax.

To avoid confusion about the terminology, let us agree that the maximum regional magnitude, mmax​, is defined as the upper limit of magnitude for a given region. Also, synonymous with the upper limit of earthquake magnitude, is the magnitude of the largest possible earthquake. The value of maximum magnitude so defined is the same as that used by many earthquake engineers (EERI Committee, 1984) and complies with the meaning of this parameter as used by e.g. Hamilton (1967), Page (1968), Cosentino et al. (1977), the Working Group on California Earthquake Probabilities (WGCEP, 1995), Stein and Hanks (1998), and Field et al. (1999). This terminology assumes a sharp cut-off magnitude at a maximum magnitude mmax, so that, by definition, no earthquakes are to be expected with magnitude exceeding mmax. 

Although a knowledge of the value of the maximum regional magnitude mmax is required in many engineering applications, it is surprising how little has been done in developing appropriate techniques for an estimation of this parameter. At present there is no generally accepted method for estimating the value of mmax. The current methods for the evaluation fall into two main categories: deterministic and probabilistic. 

The deterministic procedure most often applied is based on the empirical relationships between magnitude and various tectonic and fault parameters. There are several research efforts devoted to the investigation of such relationships. The relationships are different for different seismic areas and different types of faults (Wells and Coppersmith, 1994; Anderson et al., 1996, and the references therein). As an alternative to the above technique, researchers often try to relate the value of mmax to the strain rate or the rate of seismic-moment release (Papastamatiou, 1980; Anderson and Luco, 1983; WGCEP, 1995; Stein and Hanks, 1998; Field et al., 1999). Such an approach has also been applied in evaluating the maximum possible magnitude of seismic events induced by mining (e.g. McGarr, 1984). Another procedure for the estimation of mmax was developed by Jin and Aki (1988), where a remarkably linear relationship was established between the logarithm of coda Q0 and the largest observed magnitude for earthquakes in China. The authors postulate that if the largest magnitude observed during the last 400 years is the maximum possible magnitude mmax, the established relation will give a spatial mapping of mmax. A very interesting, alternative procedure for the estimation of mmax was also described by Ward (1997). Ward’s computer simulations of the largest earthquake are impressive and convincing. Nevertheless, one must realize that all the quantitative assessments given by Ward (1997) are based on the particular model assumed for the rupture process, on the postulated parameters of the strength of the faults and on the configuration of the faults. 

However, in most cases, the uncertainty of the value of the parameter mmax as determined by any deterministic procedure is large, often reaching a value of the order of one unit on the Richter scale.

The value of mmax can also be estimated purely on the basis of the seismological history of the area, viz. by using seismic event catalogs and an appropriate statistical estimation procedure. The most often used probabilistic procedure for maximum regional magnitude was developed in the late sixties, and is based on the extrapolation of the classical, log-linear, frequency-magnitude Gutenberg-Richter relation. Among earthquake engineers, the best known is probably the extrapolation procedure as applied recently e.g. by Frohlich (1998), and the “probabilistic” extrapolation procedure applied by Nuttli (1981), in which the frequency-magnitude curve is truncated at the specified value of annual probability of exceedance (e.g. 0.001). Another technique is based on the formalism of the extreme values of random variables. The statistical theory of extreme values was known and well developed in the forties already, and was applied in seismology as early as 1945 (e.g. Nordquist, 1945). The appropriate statistical tools required for the estimation of the end-point of distribution functions were developed later (e.g. Robson and Whitlock, 1964; Woodroofe, 1972, 1974; Weiss and Wolfowitz, 1973; Hall, 1982) but used in estimating maximum regional magnitude from the eighties only (Dargahi-Noubary, 1983; Kijko and Sellevoll, 1989, 1992; Pisarenko, 1991; Pisarenko et al., 1996). 

The purpose of this paper is to provide a procedure (equation) for the evaluation of mmax, which is free from subjective assumptions and which is dependent only on seismic data. The procedure is generic and is capable of generating solutions in different forms, depending on the assumptions about the statistical distribution model and/or the information available about past seismicity. The procedure can be applied in the extreme case when no information about the nature of the earthquake magnitude distribution is available, i.e. the procedure is capable of generating an equation for mmax, which is independent of the particular frequency-magnitude distribution assumed. The procedure can also be used when the earthquake catalog is incomplete, i.e. when only a limited number of the largest magnitudes are available. 

MAXIMUM REGIONAL MAGNITUDE mmax:  GENERIC EQUATION.

Suppose that in the area of concern, within a specified time interval T, all n of the main earthquakes that occurred with a magnitude greater than or equal to mmin are recorded. Let us assume that the value of the magnitude mmin is known and is denoted as the threshold of completeness. We assume further that the magnitudes are independent, identically distributed, random values with cumulative distribution function (CDF), FM(m). The unknown parameter mmax is the upper limit of the range of magnitudes and is thus termed the maximum regional magnitude, and is to be estimated. Let us assume that all n recorded magnitudes are ordered in ascending order, i.e. m1 ( m2 ( … ( mn. We observe that mn, which is the largest observed magnitude (denoted also as 
[image: image89.wmf]m.

m

F

m

m

F

m

M

E

m

m

M

m

m

M

n

n

n

d

)

(

)

(

d

)

(

max

min

max

min

max

ò

ò

-

=

=

), has a CDF


[image: image2.wmf][

]

ï

î

ï

í

ì

>

£

£

<

=

.

for

,

1

,

for

,

)

(

,

for 

,

0

)

(

max

max

min

min

m

m

 

m

m

m

 

m

F

m

m

m

F

n

M

M

n

 




          Eq 1.

After integrating by parts, the expected value of Mn, E(Mn), is 
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Hence 
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          Eq 3.

This expression, after replacement of the expected value of the largest observed magnitude, E(Mn), by the largest magnitude already observed, 

, provides the equation
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          Eq 4.








in which the desired mmax appears on both sides. However, from this equation an estimated value of mmax (and denoted as 
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) can be obtained only by iteration. The first approximation of 
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can be obtained from equation (4) by replacing the unknown upper limit of integration, mmax, by the maximum observed magnitude, 
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. The next approximation is obtained by replacing the upper limit of integration by its previous solution. An extensive analysis and formal conditions of convergence of the above iterative procedure are discussed, for example, by Legras (1971). 

Cooke (1979) was probably the first to obtain this estimator (4) of the upper bound of a random variable. It should be noted that in his original paper Cooke (1979) gave an equation in which the upper limit of integration is 
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. Clearly, for large n, when the value of 
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are close to each other, the two solutions are virtually equivalent. If applied to the assessment of the maximum regional magnitude, equation (4) states that the maximum regional magnitude mmax is equal to the largest magnitude already observed, 

, increased by an amount 
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 Equation (4) is, by its nature, very general and has several interesting properties. For example, it is valid for each CDF, FM(m), and does not require the fulfillment of any additional conditions. It may also be used when the exact number of earthquakes, n, is not known. In this case, the number of earthquakes can be replaced by (T. Such a replacement is equivalent to the assumption that the number of earthquakes occurring in unit time conforms to a Poisson distribution with parameter (, with T the span of the seismic catalog. It is also important to note that, since the value of the integral 
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 is never negative, equation (4) provides a value of 
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, which is never less than the largest magnitude already observed. Of course, the drawback of the formula is that it requires integration. For some of the magnitude distribution functions the analytical expression for the integral does not exist or, if it does, requires awkward calculations. This is, however, not a real hindrance, since numerical integration with today’s high-speed computer platforms is both very fast and accurate. Equation (4) will be called the generic equation for the estimation of mmax.
In the following section we will demonstrate how equation (4) can be used in the assessment of mmax in the different circumstances that a seismologist or earthquake engineer might face in real life. The cases considered include the following: 

(i) the earthquake magnitudes are distributed according to the doubly-truncated Gutenberg-Richter relation,

(ii) the empirical magnitude distribution deviates moderately from the Gutenberg-Richter model, 

(iii) no specific model of the magnitude distribution is assumed, and only a few of the largest magnitudes are known. 

SOME SPECIAL CASES

CASE I: Application of the Generic Formula to the Gutenberg-Richter magnitude distribution. (Formula for mmax for those who accept the Gutenberg-Richter frequency-magnitude distribution unconditionally.) 

In this section we will demonstrate how to apply the generic equation (4) to one of the most often used frequency-magnitude relationships, the one known as the Gutenberg-Richter magnitude distribution. 

For the frequency-magnitude Gutenberg-Richter relation, the respective CDF of magnitudes, which are bounded from above by mmax, is (Page, 1968)


[image: image15.wmf]ï

ï

î

ï

ï

í

ì

>

£

£

-

-

-

-

-

-

<

=

,

for 

,

1

,

for 

,

)]

(

exp[

1

)]

(

exp[

1

,

for 

,

0

)

(

max

max

min

max

min

min

m

m

m

m

m

m

m

m

m

m

m

m

F

min

M

b

b

 


          Eq 5.

where ( = bln(10), and b is the b-parameter of the Gutenberg-Richter relation. Following equation (4), the estimator of mmax requires the calculation of the integral
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          Eq 6.

an integral which does not have a simple evaluation. It can be shown that an approximate, straightforward estimator of mmax, can be obtained through the application of Cramér’s approximation. According to Cramér (1961), for large n, the value of 
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where 
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 where a1 = 2.334733, a2 = 0.250621, b1 = 3.330657, and b2 = 1.681534  (Abramowitz and Stegun, 1970). Hence, following equation (4), for the Gutenberg-Richter frequency-magnitude distribution, the estimator of mmax is obtained as a solution of the equation  
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          Eq 8.

It must be noted that in its current form, equation (8) does not constitute an estimator for mmax, since expressions n1 and n2, which appear on the right hand site of the equation, also contain mmax. In the general case, the assessment of mmax is obtained by the iterative solution of equation (8). However, numerical tests based on simulated data show that when mmax - mmin 
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 100, the parameter mmax in n1 and n2 can be replaced by 
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, thus providing an mmax estimator which can be obtained without iterations. 

Equation (8) was introduced in Kijko and Sellevoll (1989). This equation has subsequently been used for estimation of the maximum regional earthquake magnitude in several seismically active areas such as China (Yurui and Tianzhong, 1997); Canada, (Weichert and Kijko, 1989); Iran (Motazedian, et al., 1997); Romania, (Marza, et al., 1991); Greece (Papadopoulos and Kijko, 1991); Algeria (Hamdache, 1998); Italy (Slejko and Kijko, 1991); Spain (Garcia-Fernandez, et al., 1989), Turkey (Aptekin et al., 1992) and the West Indies (Aspinall et al., 1994). The value of mmax obtained from the solution of equation (8) will be termed the Kijko-Sellevoll estimator of mmax​, or, in short, K-S. 

It should be noted again that the above equation for mmax can be used even when the number of seismic events, n, is not known. In such a case, the number of seismic events should be replaced by (T and this replacement is equivalent to the assumption that the number of occurrences conforms with a Poisson distribution having parameter ( and time span T of the seismic catalog. Calculation of the variance of the estimated maximum magnitude, Var(
[image: image30.wmf]max

ˆ

m

), is the same as for Cases II and III, and is shown in Section 3.3.

A significant shortcoming of the K-S equation for mmax estimation comes from the implicit assumptions that (i) seismic activity remains constant in time, (ii) the selected functional form of magnitude distribution properly describes the observations, and (iii) the parameters of the assumed distribution functions are known without error. 

CASE II:  Application of the Generic Formula to the Gutenberg-Richter Magnitude Distribution in the case of uncertainty in the b-value. (Formula for mmax for those who have limited faith in the Gutenberg-Richter frequency-magnitude distribution.) 

In contrast to assumptions of Case I, many studies of seismic activity suggest that the seismic process can be composed of temporal trends, cycles, short-term oscillations and pure random fluctuations. A list of some well-documented cases of temporal variation of seismic activity from all over the world is given in Kijko and Graham (1998). 

When the variation of seismic activity is a random process, the Bayesian formalism, in which the model parameters are treated as random variables, provides the most efficient tool in accounting for the uncertainties considered above (e.g. DeGroot, 1970). In this section, a Bayesian-based equation for the assessment of the maximum regional magnitude will be derived in which the uncertainty of the Gutenberg-Richter parameter b is taken into account. 

Following the assumption that the variation of the (-value in the Gutenberg-Richter-based CDF (5) may be represented by a Gamma distribution with parameters p and q, the Bayesian (also known as compound or mixed) CDF of magnitudes takes the form (Campbell, 1982):
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          Eq 9.

where C( is a normalizing coefficient. It is not difficult to show that p and q can be expressed in terms of the mean and variance of the (-value, where 
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. Equation (9) is also known (Campbell, 1982) as the Bayesian Exponential-Gamma CDF of earthquake magnitude. 

It is important to note that the above way of handling the uncertainty of parameter ( is by no means unique. For example, for the same purpose, Mortgat and Shah (1979) used a combination of the Bernoulli and the Beta distributions. Dong et al. (1984), as well as Stavrakasis and Tselentis (1987), used a combination of uniform and multinomial distributions. Excellent summaries of alternative ways of handling all kinds of uncertainties that are present in the parameters, in the model and in the data, are found in papers by Bender and Perkins (1993) and Rhoades et al. (1994). 

Knowledge of the Bayesian, Gutenberg-Richter distribution (9), makes it possible to construct the Bayesian version of the estimator of mmax. Following the generic equation (4), the estimation of mmax requires calculation of the integral 
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        Eq 10.

which, after application of Cramér’s approximation, can be expressed as 
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where 
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 is the Incomplete Gamma Function. Again, as in the previous case (equation 8), equation (11) does not provide an estimator for mmax, since some terms on the right hand site also contain mmax. Thus, the estimator of mmax, when the uncertainty of the Gutenberg-Richter parameter b is taken into account, is calculated as an iterative solution of the equation 
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        Eq 12.

The value of mmax obtained from the solution of equation (12) will be denoted as the Kijko-Sellevoll-Bayes estimator of mmax, or, in short, K-S-B. An extensive comparison of performances of K-S and K-S-B estimators is given in Kijko and Graham (1998). 

CASE III: Estimation of mmax when no specific model of the magnitude distribution is assumed.  (Formula for mmax for those who only believe in what they see.) 

The procedures derived in the previous sections are parametric and are applicable when the empirical log-frequency-magnitude graph for the seismic series exhibits apparent linearity, starting from a certain 
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value. However, many studies of seismicity show that, in some cases, (i) the empirical distributions of earthquake magnitudes are of bi- or multi-modal character, (ii) the log-frequency-magnitude relation has a strong non-linear component or (iii) the presence of "characteristic" events (Schwartz and Coppersmith, 1984) is evident. There are, by way of illustration, some well-documented cases of such deviations and they include natural seismicity in Alaska (Devison and Scholz, 1984), Italy (Molchan et al., 1997), Mexico (Singh et al., 1983), Japan (Wesnousky et al., 1983) and the United States (Main and Burton, 1984b; Weimer and Wyss, 1997), as well as mine-induced seismicity in the former Czechoslovakia, in Poland and in South Africa (Finnie, 1994; Gibowicz and Kijko, 1994).

In order to use the generic equation (4) in such cases, the analytical, parametric models of the frequency-magnitude distributions should be replaced by a non-parametric counterpart. 

The non-parametric estimation of a probability density function (PDF) is an approach that deals with the direct summation of the kernel functions using sample data. Given the sample data mi, i = 1 ,..., n, and the kernel function K((), the kernel estimator 
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        Eq 13.

where h is a positive smoothing factor (Parzen, 1962). The kernel function K(() is a PDF, symmetric about zero. The specific choice of it is not so important for the performance of the method; many unimodal distribution functions ensure similar efficiencies. In this work the Gaussian kernel function,
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is used. However, the choice of the smoothing factor h is crucial because it affects the trade-off between random and systematic errors. Several procedures exist for the estimation of the value of this parameter, none of them being distinctly better for all varieties of real data (Silverman, 1986). For purposes of this report the least-squares cross-validation (Stone, 1984) was used. The details of the procedure are given by Kijko et al. (2001). 

Following the functional form of a selected kernel (14) and the fact that the data comes from a finite interval 
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and
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        Eq 16.

where 
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 denotes the standard Gaussian cumulative distribution function. 

Despite its flexibility, a model-free technique such as the one above has been used only occasionally in seismology. One of the first uses was in the estimation of the conditional failure rates from successive recurrence times of micro-earthquakes (Rice, 1975). The non-parametric CDF of seismic event occurrence time was also employed by Sólnes et al. (1994). Another application involved the estimation of spatial distribution of seismic sources (Woo, 1996; Bommer et al., 1997; Jackson and Kagan, 1999, and the references there) and the non-parametric estimation of temporal variations of magnitude distributions in mines (Lasocki and Weglarczyk, 1998). 

By applying the non-parametric, Gaussian-based assessment of the CDF as given by equation (16), the approximate value of the integral for ( is
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        Eq 17.

Therefore, the equation for mmax based on the non-parametric Gaussian estimation of PDF takes the form  
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        Eq 18.

The value of mmax obtained from equation (18) will be denoted as the non-parametric, Gaussian-based estimator or, in short, N-P-G. 

The N-P-G estimator of mmax is very useful. Its strongest point is that it does not require specification of the functional form of the magnitude distribution FM(m).  By its nature, therefore, it is capable of dealing with cases of complex empirical distributions, e.g. distributions that are in extreme violation of log-linearity, and/or are multimodal, and/or incorporate "characteristic" earthquakes. The drawback of estimator (18) is that, formally, it requires knowledge of all events with magnitude above a specified level of completeness mmin. In practice, though, this can be reduced to knowledge of a few (say 10) of the largest events. Such a reduction is possible because the contribution of the weak events to the estimated value of mmax decreases very rapidly as magnitude decreases, and for large n, the few largest observations carry most of the information about its end point. Another drawback of the formula (18) is that it requires numerical integration. However, it need not be a real obstacle, since numerical integration with today’s PC’s is both very fast and accurate.

Different approaches can be used in the estimation of the standard deviations of above estimators of mmax. Essentially, the uncertainty of mmax determination has its source in the random nature of the largest observed magnitude 

. This uncertainty has two components: aleatory and epistemic (Toro et al., 1997). 
Simple computations show (Kijko and Graham, 1998) that the approximate variance of the aleatory uncertainty is of the order of the value of 
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. Therefore, the approximate, total variance of any of the above estimators [i.e. (8), (12) and (18)] is given by 
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where the corrections 
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 are described by equation (7), (11) and (17) respectively, and the upper limit of integration, mmax, is replaced by its estimate, 
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Tests of Procedures based on Monte-Carlo Simulations

Studies of the accuracy of the estimation of m​max by the procedures given above were carried out using simulated catalogues. The tests were designed to answer three basic questions: (1) how does the accuracy of the estimated maximum magnitude depend on the number of events in the catalogue? More precisely, what is minimum number of events required to estimate mmax with sufficient accuracy (say 0.1 unit of magnitude)?  (2) How do the estimates of mmax behave in the presence of a “reasonable” difference between the assumed and true model of frequency-magnitude distribution?  (3) If it is true that only the largest events give information on mmax, how many such events are required in order to assess mmax with sufficient accuracy?  

To answer the first question, 1000 simulated catalogues, with b-value equal to 1.0 (
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), with the “true” mmax = 8.0, and with mmin = 7.0, 6.0, and 5.0 respectively, were generated. The simulations were performed for different numbers of earthquakes, ranging from 50 to 500. All generated magnitudes were rounded off to the first decimal place.

The results of the estimation of mmax by the K-S procedure for the respective 3 levels of completeness are given in Figure 1. 
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Figure 1. Performance of K-S estimator for magnitude range from 1 to 3. Each of the maximum magnitude mmax estimate is based on 1000 synthetic catalogues with magnitudes distributed according to the doubly-truncated Gutenberg-Richter relation with a b-value equal to 1. When the magnitude range <mmin, mmax> does not exceed 2 units of magnitude (lines with triangular and circle markers), then 50 events on average, are sufficient for assessing the value of mmax. If the range is close to 3 units of magnitude (line with square markers), an accurate assessment of mmax requires at least 150 events.  

The circle markers show the results of the m​max evaluation in the case when the range <mmin, mmax> is equal to one unit of magnitude. The triangular markers show similar results for a range of 2 units, and square markers present the case when the range is 3 units. Figure 1 (lines with square and triangular markers) shows that 50 events, on average, are sufficient for the assessment of the value of mmax, when the difference between mmax and the level of completeness mmin does not exceed two units of magnitude. If the range of magnitude is equal to three units of magnitude, the formula works well for ca. 150 events or more. This numerical experiment is important because it provides a lower limit on the number of seismic events required for a reliable assessment of mmax. It must also be clearly stated that conclusions drawn from these numerical experiments are correct not only for the values of mmin and mmax actually used, but for any values of mmax and mmin, provided that the difference between them is the same as in the experiment, and the b-value of Gutenberg-Richter is close to 1. 

Figures (2)-(4) show the performance of the three estimators of mmax, derived for the three different models of frequency-magnitude distribution: pure, doubly-truncated Gutenberg-Richter (5), Bayesian Gutenberg-Richter (9) incorporating significant uncertainty in the b-​value, and a mixture of the Gutenberg-Richter and characteristic earthquake distributions. The parameters of the three models are given in Table 1. Again, all estimates are obtained from averaging the values of mmax calculated from 1000 catalogues in each of which the number of events is in the range 50-500.

TABLE 1

MODELS OF MAGNITUDE DISTRIBUTION TESTED

Model
Parameters

Gutenberg-Richter (equation 5)
B= 1.0  (( = 2.30)

mmin = 6.0,  mmax = 8.0

Bayesian-Gutenberg-Richter (equation 9)
b = 1.0  ((  = 2.30), 
[image: image64.wmf]25

.

0

=

b

s



[image: image65.wmf]=

min

m

6.0,  
[image: image66.wmf]=

max

m

 8.0 

0.95 Gutenberg-Richter + 0.05 Uniform
Parameters of Gutenberg-Richter distribution:

b = 1.0  (( = 2.30),

mmin = 5.0,  mmax = 7.0

Parameters of uniform distribution:

mmin = 7.0,  mmax = 8.0

Figure 2 presents the mean values of the non-parametric (N-P-G) and parametric (K-S and K-S-B) estimates of mmax for model I, (i.e. the classical, doubly-truncated Gutenberg-Richter distribution (5)), with mmin = 6.0, mmax = 8.0 and b = 1.0. For a number of events less than 100, all three estimators are slightly biased. It is interesting to note that the bias of the non-parametric estimate, N-P-G, is negative, while the bias of the parametric, K-S and K-S-B estimators, is positive. In both cases, the bias is low and it does not exceed 0.1 unit of magnitude.  As one might expect, both parametric procedures provide almost the same results. The bias decreases as the number of events increases. In absolute terms, the non-parametric estimate of mmax is not significantly worse than its parametric counterpart. In the above experiment we choose a moderate difference between mmax and mmin, equal to 2 units of magnitude. If the difference between mmax and mmin is smaller (Figure 1, line with circle markers), the same accuracy of estimation of mmax requires significantly fewer events. 
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Figure 2. Performance of the three derived estimators for model I, (viz. the classic doubly-truncated frequency-magnitude Gutenberg-Richter relation). Each estimate of mmax is based on 1000 synthetic catalogues, where the “true” value of mmax = 8.0, mmin = 6.0, and b = 1. Both parametric estimators (viz. K-S and K-S-B) provide almost the same results. When the model of magnitude distribution assumed is the same as that of the distribution of data, the non-parametric estimate of mmax is not significantly worse than its parametric counterparts, K-S, and K-S-B. 

The Figure 3 shows the performance of the three estimators for model II, describing the presence of the uncertainties in the b-value. The comparison was based on 1000 synthetic catalogues where the “true” value of mmax was 8.0, mmin was 6.0, and the b-value was subjected to a random, normally distributed error with mean equal to zero and standard deviation equal to 25% of the b-value. Figure 3 shows that the K-S estimator (which by its nature ignores the uncertainty in the b-value) significantly overestimates the value of mmax. The superiority of the K-S-B estimator, which explicitly takes into account the uncertainty in the b-value, over the K-S procedure is clearly seen. Again, the non-parametric estimate of mmax, which is slightly biased in the case of a small number of events, is essentially the same as its parametric counterpart, K-S-B. The lesson that follows from the above experiment is clear: when the guess for the magnitude distribution model is wrong, the parametric K-S approach can result in an unacceptably large overestimation of the value of mmax. 

[image: image68.emf]50 100 150 200 250 300 350 400 450 500

8

8.02

8.04

8.06

8.08

8.1

8.12

8.14

8.16

8.18

8.2

Number of earthquakes

Magnitude m

m

a

x

CDF Model: Bayesian Gutenberg-Richter

K-S  

K-S-B

N-P-G


Figure 3. Performance of the three derived estimators for model II, describing the presence of uncertainties in the Gutenberg-Richter parameter b. Each estimate of mmax is based on 1000 synthetic catalogues, where the “true” value of mmax = 8.0, mmin = 6.0, the mean value of b = 1, and the b-value was subjected to a random, normally distributed error with mean equal to zero and standard deviation equal to 0.25. The K-S estimator ignores the uncertainty in the b-value and significantly overestimates mmax. The superiority of the K-S-B estimator, which accounts for uncertainty in the b-value, over the K-S procedure is clearly seen. The non-parametric estimate of mmax, is only slightly biased for a small number of events, and is essentially the same as K-S-B. 

These conclusions are supported by results of the subsequent experiment shown in Figure 4. The figure presents results of the estimation of mmax​ for model III (viz. the Gutenberg-Richter + Characteristic Earthquakes). The K-S estimation, which is designed to assess the value of mmax for the pure Gutenberg-Richter distribution, and which does not make provision for deviation from this model, significantly overestimates the value of mmax​. The same overestimation is yielded (but not to such an extent) by the second parametric estimator, viz. K-S-B. In this model of magnitude distribution and estimation procedure, the positive bias becomes insignificant when the number of events approaches 200.  At the same time the non-parametric procedure overestimates the true value of mmax, but only slightly. For this model and the N-P-G estimation procedure, the positive bias is insignificant when the number of events exceeds about 200. 
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Figure 4. Performance of the three derived estimators for model III, taking into account the presence of characteristic earthquakes. Each estimate of mmax is based on 1000 synthetic catalogues, where the “true” value of mmax = 8.0, mmin = 6.0 and the b-value of the Gutenberg-Richter relation is 1. Both parametric estimators (K-S and K-S-B) significantly overestimate the value of mmax. The test shows that when the model of magnitude distribution selected is wrong, the parametric approach can result in unacceptably large errors. At the same time the non-parametric procedure overestimates the value of mmax only slightly. 

The final experiment was designed to verify the opinion, often stated, (e.g. Darghi-Noubary, 1983), that in order to assess the value of mmax, it is not necessary to know a large number of events. It is much more important to know the “proper” events, viz. the strongest ones, since the largest events bring the most information about the upper end of the magnitude distribution function. Figure 5 shows the results of estimation of mmax by the non-parametric procedure N-P-G, applied only to the 5, 10 and 25 largest events. Again, as in all previous experiments, 1000 synthetic catalogues were generated for a range of magnitudes equal to 2 (mmax = 8.0, mmin = 6.0), and b-value equal to 1.0. As one might expect, the largest negative bias in the estimation of mmax is produced by that curve for which only the 5 largest events were used. The best estimate however is obtained when all events are used. When the number of events exceeds ca. 100, all the curves (viz. those based on the 5, 10 and 25 largest events) provide a value of mmax having an error of less than 0.1.
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Figure 5. Performance of non-parametric, N-P-G, estimator when applied to 5, 10 and 25 largest events. Each estimate of mmax is based on 1000 synthetic catalogues, where the “true” value of mmax = 8.0, mmin = 6.0 and the b-value of the Gutenberg-Richter relation is 1. 

Results of mmax determination for Southern California

All information about the seismicity of Southern California during the last 150 years was taken from Appendix A of a paper by Field et al. (1999). In order to be consistent with the assumption of the independence of seismic events (required by estimators K-S and K-S-B), all aftershocks were removed. This reduced catalog also has different levels of completeness for various time intervals. Application of the maximum likelihood procedure to this catalog, when all the parameters are determined simultaneously (Kijko and Sellevoll, 1992), yields the values: 
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 denote, respectively, the K-S estimator (8) and the K-S-B estimator (12).
 Application of the remaining procedure to find estimates of mmax gives: 
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 is the non-parametric, Gaussian-based estimator (18). The observed, cumulative number of earthquakes and its non-parametric fit for the data from Southern California are shown in Figure 6.  All estimated values of mmax together with their standard deviations are shown in Table 2. 
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Figure 6. Observed cumulative number of earthquakes and the non-parametric fit for the data from Southern California (after Field et al., 1999).

TABLE 2

THE VALUES OF mmax, WITH THEIR STANDARD DEVIATIONS, AS OBTAINED BY THE THREE PROCEDURES DEVELOPED IN THIS PAPER FOR SOUTHERN CALIFORNIA. THE LAST ROW SHOWS THE VALUE OF mmax = 7.99 AS OBTAINED BY Field et al. (1999). 

PROCEDURE
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K-S
8.32  ( 0.43

K-S-B
8.31  ( 0.42

N-P-G (based on non-parametric estimation of PDF)
8.34  ( 0.45

Field et al. (1999)
7.99

All three estimated parameters differ from the corresponding values obtained by Field et al. (1999), in which the least-squares fit of all data gives 
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. Obviously, the differences follow from the different assumptions, the different models, the application of different estimation procedures and the use of different data.  Our assessments are based on the Gutenberg-Richter relation only (for the K-S and K-S-B estimators), while the Field et al. (1999) model contains an additional component – the occurrence of characteristic earthquakes.  Furthermore, the Field et al. (1999) model has its whole procedure constrained by the principle of conservation of seismic moment.  Our estimates are based on the maximum likelihood principle, while the Field et al. (1999) results come from the least-squares fit. The Field et al. (1999) results are based on all available data (main events and aftershocks), while our estimates are based only on main earthquakes. 

It is rather surprising that the solutions of the three equations discussed give such similar values of maximum possible magnitude for Southern California. In general, since the N-P-G procedure is, by its nature, non-parametric, and does not require specification of the functional form of the magnitude distribution, this procedure is considered more reliable than the model-based estimators K-S and K-S-B. 

Discussion, Remarks and Conclusions 

This paper is dedicated to the problem of determination of the maximum regional earthquake magnitude mmax. A generic equation for the evaluation of mmax was developed. The equation is very flexible and is capable of generating solutions in different forms, depending on the assumptions about the model and/or on the available information on past seismicity. Three special cases of the generic equation are discussed: 

· when earthquake magnitudes are distributed according to the doubly-truncated Gutenberg-Richter relation, 

· when the empirical magnitude distribution deviates moderately from the Gutenberg-Richter model, and

· when no specific model of magnitude distribution is assumed. 

The first two solutions of the generic equation (4) provide estimators of mmax that are parametric, having the same parameters as used in the description of the CDF of magnitude distribution. Since the third solution of the generic equation does not require specification of the functional form of the magnitude distribution, the estimator of mmax obtained is non-parametric. 

Tests performed on simulated seismic event catalogues are intended to model the typical scenario of seismic hazard assessment. Two types of scenario are imitated: when the assumed model of magnitude distribution is the same as the empirical distribution of data, and when the assumed model of magnitude distribution is wrong. 

It is shown that when the model of magnitude distribution assumed is the same as that of the data distribution, then the non-parametric estimates of mmax are not significantly worse than the estimates provided by the parametric approach. On the contrary, when the model of magnitude distribution selected is wrong, the parametric approach can result in an unacceptably erroneous estimation of mmax. 

It is shown that when earthquake magnitudes rigorously follow the model of magnitude distribution assumed (the Gutenberg-Richter relation with the b-value close to 1 is considered), and the range of earthquake magnitudes <mmin, mmax> does not exceed two units, then, on average, 50 events are enough to assess the value of mmax. If the range of magnitudes is near to 3, then an accurate assessment of mmax requires at least 150 events. 

Further, the common opinion that the value of mmax can be estimated on the basis of knowing only the few strongest events, was tested. It is shown that for a typical scenario (Gutenberg-Richter b-value equal to 1.0 and the range of magnitude not exceeding two units), it is enough to know only the 5 largest events from a catalogue of 100 events to assess the value of mmax with an error less than 0.1.

The three estimators derived are applied in assessing the value of the maximum earthquake magnitude for Southern California. The three estimates of mmax are: 8.32 ( 0.43, 8.31 ( 0.42 and 8.34 ( 0.45. (These estimates overlap when their standard deviations are taken into account.) 

The values of 
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 for Southern California obtained from the two parametric procedures (K-S and K-S-B procedure), are slightly lower than the value obtained from the non-parametric procedure, N-P-G. These differences can be attributed to the fact that the first two estimators are based on the Gutenberg-Richter model of the frequency-magnitude relation, which might not be correct for Southern California. Since the N-P-G procedure is non-parametric and does not require specification of the functional form of the magnitude distribution, its estimate of the maximum magnitude for Southern California (8.34 ( 0.45), is probably more reliable than the model-based estimators K-S and K-S-B. 

The computer program used for the maximum likelihood estimation of the mean value of the seismic activity rate 
[image: image86.wmf]l

, the Gutenberg-Richter parameter b, the K-S and the K-S-B estimators of mmax, using incomplete and uncertain data files, can be provided by the author on request. A detailed description of the estimation procedure and the way in which magnitude uncertainties and incompleteness of the catalog are defined, can be found in Kijko and Sellevoll (1992). 
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� EMBED Equation.3  ���











� It is noteworthy that soon after its development (1987-1988), the maximum likelihood procedure as applied above was compared with a similar technique developed by Weichert (1980). A summary of a comparison between the two techniques is given by Weichert and Kijko (1989). Extensive tests based on synthetic catalogs show that for a given value of mmax, both procedures are equivalent and produce exactly the same results. The main difference between the two techniques lies in the fact that Weichert’s procedure requires a priori knowledge of the maximum magnitude, while the Kijko-Sellevoll approach provides its own estimation. In addition, the latter procedure permits the combination of the largest earthquakes with complete data and explicitly takes into account the uncertainty in determination of magnitude.   
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